24 research outputs found

    Finding and sharing: new approaches to registries of databases and services for the biomedical sciences

    Get PDF
    The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their needs, and the most efficient way to access and use them. Despite a rapid acceleration in uptake of syntactic and semantic standards for interoperability, it is still difficult for users to find which databases support the standards and interfaces that they need. To solve these problems, several groups are developing registries of databases that capture key metadata describing the biological scope, utility, accessibility, ease-of-use and existence of web services allowing interoperability between resources. Here, we describe some of these initiatives including a novel formalism, the Database Description Framework, for describing database operations and functionality and encouraging good database practise. We expect such approaches will result in improved discovery, uptake and utilization of data resources. Database URL: http://www.casimir.org.uk/casimir_dd

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    Get PDF
    A. Palotie on työryhmÀn UK10K Consortium jÀsen.Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF similar to 0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 x 10(-3)), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.Peer reviewe

    Managing clinically significant findings in research:the UK10K example

    Get PDF
    Recent advances in sequencing technology allow data on the human genome to be generated more quickly and in greater detail than ever before. Such detail includes findings that may be of significance to the health of the research participant involved. Although research studies generally do not feed back information on clinically significant findings (CSFs) to participants, this stance is increasingly being questioned. There may be difficulties and risks in feeding clinically significant information back to research participants, however, the UK10K consortium sought to address these by creating a detailed management pathway. This was not intended to create any obligation upon the researchers to feed back any CSFs they discovered. Instead, it provides a mechanism to ensure that any such findings can be passed on to the participant where appropriate. This paper describes this mechanism and the specific criteria, which must be fulfilled in order for a finding and participant to qualify for feedback. This mechanism could be used by future research consortia, and may also assist in the development of sound principles for dealing with CSFs

    Rapid Genomic Characterization and Global Surveillance of Klebsiella Using Pathogenwatch.

    Get PDF
    BACKGROUND: Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread implementation requires tools to streamline bioinformatic analyses and public health reporting. METHODS: We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for integration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income countries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR. RESULTS: Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1-O3) represented 88.9% of all genomes, whereas capsule types were much more diverse. CONCLUSIONS: Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveillance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further facilitating ongoing surveillance

    X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Get PDF
    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmÀn UK10K jÀsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe
    corecore