117 research outputs found
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (<i>c</i><sub>p</sub>) measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in <i>c</i><sub>p</sub>. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in <i>c</i><sub>p</sub>. Application of this method to spectral <i>c</i><sub>p</sub> measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in <i>c</i><sub>p</sub> can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6±1.5 ÎŒm. The inferred carbon biomass of these cells was about 5.2â6.0 mg m<sup>â3</sup> and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp) measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in cp. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6-1.5 1/4ÎŒm. The inferred carbon biomass of these cells was about 5.2-6.0 mg mg -\u273 and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity
Deep silicon maxima in the stratified oligotrophic Mediterranean Sea
The silicon biogeochemical cycle has been studied in the Mediterranean Sea during late summer/early autumn 1999 and summer 2008. The distribution of nutrients, particulate carbon and silicon, fucoxanthin (Fuco), and total chlorophyll-<i>a</i> (TChl-<i>a</i>) were investigated along an eastward gradient of oligotrophy during two cruises (PROSOPE and BOUM) encompassing the entire Mediterranean Sea during the stratified period. At both seasons, surface waters were depleted in nutrients and the nutriclines gradually deepened towards the East, the phosphacline being the deepest in the easternmost Levantine basin. Following the nutriclines, parallel deep maxima of biogenic silica (DSM), fucoxanthin (DFM) and TChl-<i>a</i> (DCM) were evidenced during both seasons with maximal concentrations of 0.45 ÎŒmol L<sup>â1</sup> for BSi, 0.26 ÎŒg L<sup>â1</sup> for Fuco, and 1.70 ÎŒg L<sup>â1</sup> for TChl-<i>a</i>, all measured during summer. Contrary to the DCM which was a persistent feature in the Mediterranean Sea, the DSM and DFMs were observed in discrete areas of the Alboran Sea, the Algero-Provencal basin, the Ionian sea and the Levantine basin, indicating that diatoms were able to grow at depth and dominate the DCM under specific conditions. Diatom assemblages were dominated by <i>Chaetoceros</i> spp., <i>Leptocylindrus</i> spp., <i>Pseudonitzschia</i> spp. and the association between large centric diatoms (<i>Hemiaulus hauckii</i> and <i>Rhizosolenia styliformis</i>) and the cyanobacterium <i>Richelia intracellularis</i> was observed at nearly all sites. The diatom's ability to grow at depth is commonly observed in other oligotrophic regions and could play a major role in ecosystem productivity and carbon export to depth. Contrary to the common view that Si and siliceous phytoplankton are not major components of the Mediterranean biogeochemistry, we suggest here that diatoms, by persisting at depth during the stratified period, could contribute to a large part of the marine primary production as observed in other oligotrophic areas
Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While â50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of total and detyrosinated α-tubulin were markedly higher in HCMSMP than in HCMSMN and controls. Higher tubulin detyrosination was also found in 2 unrelated MYBPC3 mouse models and its inhibition with parthenolide normalized contraction and relaxation time of isolated cardiomyocytes. CONCLUSIONS: Our findings indicate that microtubules and especially its detyrosination contribute to the pathomechanism of patients with HCMSMP. This is of clinical importance since it represents a potential treatment target to improve cardiac function in patients with HCMSMP, whereas a beneficial effect may be limited in patients with HCMSMN
Nutrients limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise)
Revue sans Comité de lectureInternational audienceIron is an essential nutrient involved in a variety of biological processes in the ocean, including photosynthesis, respiration and nitrogen fixation. Atmospheric deposition of aerosols is recognized as the main source of iron for the surface ocean. In high nutrient, low chlorophyll areas, it is now clearly established that iron limits phytoplankton productivity but its biogeochemical role in low nutrient, low chlorophyll environments has been poorly studied. We investigated this question in the unexplored southeast Pacific, arguably the most oligotrophic area of the global ocean. Situated far from any continental aerosol source, the atmospheric iron flux to this province is amongst the lowest of the world ocean. Here we report that, despite low dissolved iron concentrations (~0.1 nmol l-1) measured across the whole gyre (3 stations situated in the center, the western and the eastern edge), photosynthesis and primary productivity are only limited by iron availability at the border of the gyre, but not in the center. The seasonal stability of the gyre has apparently allowed for the development of populations acclimated to these extreme oligotrophic conditions. Moreover, despite clear evidence of nitrogen limitation in the central gyre, we were unable to measure nitrogen fixation in our experiments, even after iron and/or phosphate additions, and cyanobacterial nifH gene abundances were extremely low compared to the North Pacific Gyre. The South Pacific gyre is therefore unique with respect to the physiological status of its phytoplankton populations
Recommended from our members
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (c[subscript p]) measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in c[subscript p]. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in c[subscript p]. Application of this method to spectral c[subscript p] measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in c[subscript p] can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6±1.5 ÎŒm. The inferred carbon biomass of these cells was about 5.2â6.0 mg mâ»Âł and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity
Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While â50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of t
Recommended from our members
The effect of atmospheric acid processing on the global deposition of bioavailable phosphorus from dust
The role of dust as a source of bioavailable phosphorus (Bio-P) is quantified using a new parameterization for apatite dissolution in combination with global soil data maps and a global aerosol transport model. Mineral dust provides 31.2 Gg-P yr-1 of Bio-P to the oceans, with 14.3 Gg-P yr-1 from labile P present in the dust, and an aditional 16.9 Gg-P yr from acid dissolution of apatite in the atmosphere, representing an increase of 120%. The North Atlantic, north west Pacific, and Mediterranean Sea are identified as important sites of Bio-P deposition from mineral dust. The acid dissolution process increases the fraction of total-P that is bioavailable from ~10% globally from the labile pool to 23% in the Atlantic Ocean, 45% in the Pacific Ocean, and 21% in the Indian Ocean, with an ocean global mean value of 22%. Strong seasonal variations, especially in the North Pacific, northwest Atlantic, and Indian Ocean, are driven by large-scale meteorology and pollution sources from industrial and biomass-burning regions. Globally constant values of total-P content and bioavailable fraction used previously do not capture the simulated variability. We find particular sensitivity to the representation of particle-to-particle variability of apatite, which supplies Bio-P through acid-dissolution, and calcium carbonate, which helps to buffer the dissolution process. A modest 10% external mixing results in an increase of Bio-P deposition by 18%. The total Bio-P calculated here (31.2 Gg-P yr-1) represents a minimum compared to previous estimates due to the relatively low total-P in the global soil map used
Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity
Species diversity is widely recognized as an important trait of ecosystemsâ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200â400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersiĂłn del editor4,411
- âŠ