53 research outputs found

    Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon

    Get PDF
    Jaguars (Panthera onca) exert critical top-down control over large vertebrates across the Neotropics. Yet, this iconic species have been declining due to multiple threats, such as habitat loss and hunting, which are rapidly increasing across the New World tropics. Based on geospatial layers, we extracted socio-environmental variables for 447 protected areas across the Brazilian Amazon to identify those that merit short-term high-priority efforts to maximize jaguar persistence. Data were analyzed using descriptive statistics and comparisons of measures of central tendency. Our results reveal that areas containing the largest jaguar densities and the largest estimated population sizes are precisely among those confronting most anthropogenic threats. Jaguars are threatened in the world’s largest tropical forest biome by deforestation associated with anthropogenic fires, and the subsequent establishment of pastures. By contrasting the highest threats with the highest jaguar population sizes in a bivariate plot, we provide a shortlist of the top-10 protected areas that should be prioritized for immediate jaguar conservation efforts and 74 for short-term action. Many of these are located at the deforestation frontier or in important boundaries with neighboring countries (e.g., Peruvian, Colombian and Venezuelan Amazon). The predicament of a safe future for jaguars can only be ensured if protected areas persist and resist downgrading and downsizing due to both external anthropogenic threats and geopolitical pressures (e.g., infrastructure development and frail law enforcement)

    Genome-wide signatures of complex introgression and adaptive evolution in the big cats.

    Get PDF
    The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages

    A comprehensive analysis of autocorrelation and bias in home range estimation

    Get PDF
    Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; Países BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadáFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, René. Bionet Natuuronderzoek; Países BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, Flávia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziḝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unido

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore