36 research outputs found

    The ionized gas in the central region of NGC 5253: 2D mapping of the physical and chemical properties

    Full text link
    ABRIDGED: NGC5253 was previously studied by our group with the aim to elucidate in detail the starburst interaction processes. Some open issues regarding the 2D structure of the main properties of the ionized gas remain to be addressed. Using IFS data obtained with FLAMES, we derived 2D maps for different tracers of electron density (n_e), electron temperature (T_e) and ionization degree. The maps for n_e as traced by several line ratios are compatible with a 3D stratified view of the nebula with the highest n_e in the innermost layers and a decrease of n_e outwards. To our knowledge, this is the first time that a T_e map based on [SII] lines for an extragalactic object is presented. The joint interpretation of our two T_e maps is consistent with a T_e structure in 3D with higher temperatures close to the main ionizing source surrounded by a colder and more diffuse component. The highest ionization degree is found at the peak of emission for the gas with relatively high ionization in the main GHIIR and lower ionization degree delineating the more extended diffuse component. Abundances for O, Ne and Ar are constant over the mapped area within <0.1 dex. The mean 12+log(O/H) is 8.26 while the relative abundances of log(N/O), log(Ne/O) and log(Ar/O) were \sim-1.32, -0.65 and -2.33, respectively. There are two locations with enhanced N/O. The first (log(N/O)\sim-0.95) is associated to two super star clusters. The second (log(N/O)\sim-1.17), reported here for the first time, is associated to two moderately massive (2-4x10^4 M_sun) and relatively old (\sim10 Myr) clusters. A comparison of the N/O map with those produced by strong line methods supports the use of N2O2 over N2S2 in the search for chemical inhomogeneities within a galaxy. The results on the localized nitrogen enhancement were used to compile and discuss the factors that affect the complex relationship between Wolf-Rayet stars and N/O excess.Comment: 16 pages, 14 figures, accepted for publication in A&

    High resolution spectroscopy of the BCD galaxy Haro 15: II. Chemodynamics

    Full text link
    We present a detailed study of the physical properties of the nebular material in four star-forming knots of the blue compact dwarf galaxy Haro 15. Using long-slit and echelle spectroscopy obtained at Las Campanas Observatory, we study the physical conditions (electron density and temperatures), ionic and total chemical abundances of several atoms, reddening and ionization structure, for the global flux and for the different kinematical components. The latter was derived by comparing the oxygen and sulphur ionic ratios to their corresponding observed emission line ratios (the η\eta and η\eta' plots) in different regions of the galaxy. Applying the direct method or empirical relationships for abundance determination, we perform a comparative analysis between these regions. The similarities found in the ionization structure of the different kinematical components implies that the effective temperatures of the ionizing radiation fields are very similar in spite of some small differences in the ionization state of the different elements. Therefore the different gaseous kinematical components identified in each star forming knot are probably ionized by the same star cluster. However, the difference in the ionizing structure of the two knots with knot A showing a lower effective temperature than knot B, suggests a different evolutionary stage for them consistent with the presence of an older and more evolved stellar population in the first.Comment: 21 pages, 6 figures, 8 tables, accepted by MNRA

    Integral field spectroscopy of nitrogen overabundant blue compact dwarf galaxies

    Get PDF
    We study the spatial distribution of the physical properties and of oxygen and nitrogen abundances in three Blue Compact Dwarf Galaxiess (HS 0128+2832, HS 0837+4717 and Mrk 930) with a reported excess of N/O in order to investigate the nature of this excess and, particularly, if it is associated with Wolf-Rayet (WR) stars We have observed these BCDs by using PMAS integral field spectroscopy in the optical spectral range (3700 - 6900 {\AA}), mapping their physical-chemical properties, using both the direct method and appropriate strong-line methods. We make a statistical analysis of the resulting distributions and we compare them with the integrated properties of the galaxies. Our results indicate that outer parts of the three galaxies are placed on the "AGN-zone" of the [NII]/H{\alpha} vs. [OIII]/H{\beta} diagnostic diagram most likely due to a high N/O combined with the excitation structure in these regions. From the statistical analysis, it is assumed that a certain property can be considered as spatially homogeneous (or uniform) if a normal gaussian function fits its distribution in several regions of the galaxy. Moreover, a disagreement between the integrated properties and the mean values of the distribution usually appears when a gaussian does not fit the corresponding distribution. We find that for Mrk 930, the uniformity is found for all parameters, except for electron density and reddening. The rotation curve together with the H{\alpha} map and UV images, reveal a perturbed morphology and possible interacting processes. The N/O is found to be constant in the three studied objects at spatial scales of the order of several kpc so we conclude that the number of WR stars estimated from spectroscopy is not sufficient to pollute the ISM and to produce the observed N/O excess in these objectsComment: 17 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    A 2D multiwavelength study of the ionized gas and stellar population in the Giant HII Region NGC 588

    Get PDF
    We present an analysis of NGC588 based on IFS data with PMAS, together with Spitzer images at 8 mi and 24 mi. The extinction distribution in the optical shows complex structure, with maxima correlating in position with those of the emission at 24 mi and 8 mi. The Ha luminosity absorbed by the dust within the GHIIR reproduces the structure observed in the 24 mi image, supporting the use of this band as a tracer of recent star formation. A velocity difference of ~50 km/s was measured between the areas of high and low surface brightness, which would be expected if NGC588 were an evolved GHIIR. Line ratios used in the BPT diagnostic diagrams show a larger range of variation in the low surface brightness areas. The ranges are ~0.5 to 1.2 dex for [NII]/Ha, 0.7 to 1.7 dex for [SII]/Ha, and 0.3 to 0.5 dex for [OIII]/Hb. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hb and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ~0.8 dex. [OII]/Hb and [OIII]/[OII] yield similar local values for U and consistent with those expected from the integrated spectrum of an HII region ionized by a single star. The ratio [SII]/Ha departs significantly from the range predicted by this scenario, indicating the complex ionization structure in GHIIRs. There is a significant scatter in derivations of Z using strong line tracers as a function of position, caused by variations in the degree of ionization. The scatter is smaller for N2O3 which points to this tracer as a better Z tracer than N2. The comparison between integrated and local line ratio values indicates that measurements of the line ratios of GHIIR in galaxies at distances >~25 Mpc may be dominated by the ionization conditions in their low surface brightness areas.AM-I, EP-M and JMV acknowledge partial funding through research projects AYA2007-67965-C03-02 from the Spanish PNAYA and CSD2006-00070 1st Science with GTC of the MICINN. MR is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme. CK, as a Humboldt Fellow, acknowledges support from the Alexander von Humboldt Foundation, Germany

    Piecing together the puzzle of NGC 5253: abundances, kinematics and WR stars

    Full text link
    We present Gemini-S/GMOS-IFU optical spectroscopy of four regions near the centre of the nearby (3.8 Mpc) dwarf starburst galaxy NGC 5253. This galaxy is famous for hosting a radio supernebula containing two deeply embedded massive super star clusters, surrounded by a region of enhanced nitrogen abundance that has been linked to the presence of WR stars. We detected 11 distinct sources of red WR bump (CIV) emission over a 20" (~350 pc) area, each consistent with the presence of ~1 WCE-type star. WC stars are not found coincident with the supernebula, although WN stars have previously been detected here. We performed a multi-component decomposition of the H\alpha\ line across all four fields and mapped the kinematics of the narrow and broad (FWHM = 100-250 km/s) components. These maps paint a picture of localised gas flows, as part of multiple overlapping bubbles and filaments driven by the star clusters throughout the starburst. We confirm the presence of a strong H\alpha\ velocity gradient over ~4.5" (~80 pc) coincident with the region of N/O enhancement, and high gas density known from previous study, and interpret this as an accelerating ionized gas outflow from the supernebula clusters. We measure the ionized gas abundances in a number of regions in the outer IFU positions and combine these with measurements from the literature to assess the radial abundance distribution. We find that the O/H and N/H profiles are consistent with being flat. Only the central 50 pc exhibits the well-known N/O enhancement, and we propose that the unusually high densities/pressures in the supernebula region have acted to impede the escape of metal-enriched hot winds from the star clusters and allow them to mix with the cooler phases, thus allowing these freshly processed chemicals to be seen in the optical.Comment: 16 pages, accepted to A&

    A photoionization model of the spatial distribution of the optical and mid-IR properties in NGC595

    Full text link
    We present a set of photoionization models that reproduce simultaneously the observed optical and mid-infrared spatial distribution of the HII region NGC595 in the disk of M33 using the code CLOUDY. Both optical (PMAS-Integral Field Spectroscopy) and mid-infrared (8 mi and 24 mi bands from Spitzer) data provide enough spatial resolution to model in a novel approach the inner structure of the HII region. We define a set of elliptical annular regions around the central ionizing cluster with an uniformity in their observed properties and consider each annulus as an independent thin shell structure. For the first time our models fit the relative surface brightness profiles in both the optical (Halpha, [OII], [OIII]) and the mid-infrared emissions (8 mi and 24 mi), under the assumption of a uniform metallicity (12+log(O/H) = 8.45; Esteban et al. 2009) and an age for the stellar cluster of 4.5 Myr (Malumuth et al. 1996). Our models also reproduce the observed uniformity of the R23 parameter and the increase of the [OII]/[OIII] ratio due to the decrease of the ionization parameter. The variation of the Halpha profile is explained in terms of the differences of the occupied volume (the product of filling factor and total volume of the shell) in a matter-bounded geometry, which also allows to reproduce the observed pattern of the extinction. The 8 mi/24 mi ratio is low (ranging between 0.04 and 0.4) because it is dominated by the surviving of small dust grains in the HII region, while the PAHs emit more weakly because they cannot be formed in these thin HII gas shells. The ratio is also well fitted in our models by assuming a dust-to-gas ratio in each annulus compatible with the integrated estimate for the whole HII region after the 70 mi, and 160 mi Spitzer observations.Comment: Accepted for publication in MNRAS, 9 pages, 17 figure

    First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    Get PDF
    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task due to the difficulties in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This technique allowed us to build the first catalogue of Wolf-Rayet rich regions with spatially-resolved information, allowing to study the properties of these complexes in a 2D context. The detection technique is based on the identification of the blue WR bump (around He II 4686 {\AA}, mainly associated to nitrogen-rich WR stars, WN) and the red WR bump (around C IV 5808 {\AA} and associated to carbon-rich WR stars, WC) using a pixel-by-pixel analysis. We identified 44 WR-rich regions with blue bumps distributed in 25 galaxies of a total of 558. The red WR bump was identified only in 5 of those regions. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, as potential candidates to being the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as the binary star channel (which could extend the WR phase up to 10 Myr), fast rotation or other physical processes that causes the loss of observed Lyman continuum photons, are very likely affecting the derived WR properties, and hence should be considered when modelling the evolution of massive stars.Comment: 33 pages, accepted for publication in A&

    Eliminating Error in the Chemical Abundance Scale for Extragalactic HII Regions

    Get PDF
    In an attempt to remove the systematic errors which have plagued the calibration of the HII region abundance sequence, we have theoretically modeled the extragalactic HII region sequence. We then used the theoretical spectra so generated in a double blind experiment to recover the chemical abundances using both the classical electron temperature + ionization correction factor technique, and the technique which depends on the use of strong emission lines (SELs) in the nebular spectrum to estimate the abundance of oxygen. We find a number of systematic trends, and we provide correction formulae which should remove systematic errors in the electron temperature + ionization correction factor technique. We also provide a critical evaluation of the various semi-empirical SEL techniques. Finally, we offer a scheme which should help to eliminate systematic errors in the SEL-derived chemical abundance scale for extragalactic HII regions.Comment: 24 pages, 9 Tables, 13 figures, accepted for publication in MNRAS. Updated considering minor changes during the final edition process and some few missing reference

    The baryonic content and Tully-Fisher relation at z~0.6

    Full text link
    [abr.] Using the multi-integral-field spectrograph GIRAFFE at VLT, we previsouly derived the stellar-mass Tully-Fisher Relation (smTFR) at z~0.6, and found that the distant relation is systematically offset by roughly a factor of two toward lower masses. We extend the study of the evolution of the TFR by establishing the first distant baryonic TFR. To derive gas masses in distant galaxies, we estimate a gas radius and invert the Schmidt-Kennicutt law between star formation rate and gas surface densities. We find that gas extends farther out than the UV light from young stars, a median of ~30%. We present the first baryonic TFR (bTFR) ever established at intermediate redshift and show that, within an uncertainty of +/-0.08 dex, the zeropoint of the bTFR does not appear to evolve between z~0.6 and z=0. The absence of evolution in the bTFR over the past 6 Gyr implies that no external gas accretion is required for distant rotating disks to sustain star formation until z=0 and convert most of their gas into stars. Finally, we confirm that the larger scatter found in the distant smTFR, and hence in the bTFR, is caused entirely by major mergers. This scatter results from a transfer of energy from bulk motions in the progenitors, to random motions in the remnants, generated by shocks during the merging. Shocks occurring during these events naturally explain the large extent of ionized gas found out to the UV radius in z~0.6 galaxies. All the results presented in this paper support the ``spiral rebuilding scenario'' of Hammer and collaborators, i.e., that a large fraction of local spiral disks have been reprocessed during major mergers in the past 8 Gyr.Comment: Accepted for publication in A&A, v3 addressing comments from the refere
    corecore