99 research outputs found

    Determinants of intensive insulin therapeutic regimens in patients with type 1 diabetes: data from a nationwide multicenter survey in Brazil

    Get PDF
    Background: To evaluate the determinants of intensive insulin regimens (ITs) in patients with type 1 diabetes (T1D).Methods: This multicenter study was conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 3,591 patients (56.0% female, 57.1% Caucasian). Insulin regimens were classified as follows: group 1, conventional therapy (CT) (intermediate human insulin, one to two injections daily); group 2 (three or more insulin injections of intermediate plus regular human insulin); group 3 (three or more insulin injections of intermediate human insulin plus short-acting insulin analogues); group 4, basal-bolus (one or two insulin injections of long-acting plus short-acting insulin analogues or regular insulin); and group 5, basal-bolus with continuous subcutaneous insulin infusion (CSII). Groups 2 to 5 were considered IT groups.Results: We obtained complete data from 2,961 patients. Combined intermediate plus regular human insulin was the most used therapeutic regimen. CSII was used by 37 (1.2%) patients and IT by 2,669 (90.2%) patients. More patients on IT performed self-monitoring of blood glucose and were treated at the tertiary care level compared to CT patients (p < 0.001). the majority of patients from all groups had HbA1c levels above the target. Overweight or obesity was not associated with insulin regimen. Logistic regression analysis showed that economic status, age, ethnicity, and level of care were associated with IT (p < 0.001).Conclusions: Given the prevalence of intensive treatment for T1D in Brazil, more effective therapeutic strategies are needed for long term-health benefits.Farmanguinhos/Fundacao Oswaldo Cruz/National Health MinistryBrazilian Diabetes SocietyFundacao do Amparo a Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estado Rio de Janeiro, Unit Diabet, BR-20551030 Rio de Janeiro, BrazilBaurus Diabet Assoc, São Paulo, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilFed Univ Hosp Porto Alegre, Porto Alegre, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Fed Rio de Janeiro, Rio de Janeiro, BrazilUniv Fed Ceara, Fortaleza, Ceara, BrazilSanta Casa Misericordia, Belo Horizonte, MG, BrazilSanta Casa Misericordia São Paulo, São Paulo, BrazilUniv Fed Amazonas, Manaus, Amazonas, BrazilHosp Geral de Bonsucesso, Rio de Janeiro, BrazilHosp Univ Clementino Fraga Filho IPPMG, Rio de Janeiro, BrazilUniv Hosp São Paulo, São Paulo, BrazilFac Ciencias Med Santa Casa São Paulo, São Paulo, BrazilUniv São Paulo, Inst Crianca, Hosp Clin, São Paulo, BrazilUniv São Paulo, Fac Med Ribeirao Preto, Hosp Clin, Ribeirao Preto, BrazilAmbulatorio Fac Estadual Med Sao Jose Rio Preto, Ribeirao Preto, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilClin Endocrinol Santa Casa Belo Horizonte, Belo Horizonte, MG, BrazilUniv Estadual Londrina, Londrina, BrazilUniv Fed Parana, Hosp Clin, Porto Alegre, RS, BrazilInst Crianca Com Diabet Rio Grande Sul, Rio Grande Do Sul, RS, BrazilGrp Hosp Conceicao, Inst Crianca Com Diabet, Porto Alegre, RS, BrazilHosp Univ Santa Catarina, Florianopolis, SC, BrazilInst Diabet Endocrinol Joinville, Joinville, BrazilHosp Reg Taguatinga, Brasilia, DF, BrazilHosp Geral Goiania, Goiania, Go, BrazilCtr Diabet & Endocrinol Estado Bahia, Goiania, Go, BrazilUniv Fed Maranhao, Sao Luis, BrazilCtr Integrado Diabet & Hipertensao Ceara, Fortaleza, Ceara, BrazilUniv Fed Sergipe, Aracaju, BrazilHosp Univ Alcides Carneiro, Campina Grande, BrazilHosp Univ Joao de Barros Barreto, Belem, Para, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, São Paulo, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilWeb of Scienc

    The global distribution and environmental drivers of the soil antibiotic resistome

    Get PDF
    Background: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth’s largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. Results: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. Conclusions: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome.This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement 702057 (CLIMIFUN), a Large Research Grant from the British Ecological Society (agreement no. LRA17\1193; MUSGONET), and from the European Research Council (ERC grant agreement no. 647038, BIODESERT). M. D. B. was also supported by a Ramón y Cajal grant (RYC2018-025483-I). M.D-B. also acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático “01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación”) associated with the research project P20_00879 (ANDABIOMA). FTM acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041). J. Z. H and H. W. H. are financially supported by Australian Research Council (DP210100332). We also thank the project CTM2015-64728-C2-2-R from the Ministry of Science of Spain. C. A. G. and N. E. acknowledge funding by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). TG was financially supported by Slovenian Research Agency (P4-0107, J4-3098 and J4-4547)

    Palynological and chemical volatile components of tipically autumnal honeys of the western Mediterranean

    Full text link
    [EN] Twenty-five samples of autumnal honeys from the western Mediterranean (Mallorca and Eivissa, Balearic Islands) were examined for pollen content (qualitative and quantitative melissopalynological analysis), moisture, electrical conductivity, colour, sensorial qualities and volatile components. Quantitative analysis showed that the honey contained Maurizio's Class II: 64%, Class III: 28%, Class IV: 4% and Class V: 4%. Fifty-four pollen types, with an average number of 16.68 per sample, were identified, belonging to 29 botanical families. Only two taxa (Ceratonia siliqua and Erica multiflora) were found in all samples. Seventeen samples were unifloral (68%) - ten (40%) of C. siliqua, six (24%) of E. multiflora and one (4%) of Hedera helix. All honeys have a low honeydew index (<?0.09%), while the values for electrical conductivity and water content were high. The major honey volatile components are: cis- and trans-linalool oxides (64.2%) and hotrienol (10.4%) for the carob (C. siliqua) and trans-linalool oxide (13.4%), p-menthane-1,8-diol (11.1%), safranal (9.7%), limonene (5,4%), -pinene (3.7%) and oxoisophorone (3.4%) for the winter heather (E. multiflora).The authors would like to extend their gratitude to the Mallorca Rural 'Leader plus' programme and the beekeepers of Mallorca and Eivissa for their support and friendly collaboration. The authors also thank an anonymous reviewer for useful comments and suggestions on an earlier version of the manuscript.Boi, M.; Llorens Molina, JA.; Cortés, L.; Lladó, G.; Llorens, L. (2013). Palynological and chemical volatile components of tipically autumnal honeys of the western Mediterranean. Grana. 52(2):93-105. doi:10.1080/00173134.2012.744774S93105522Andrade, P. B., Amaral, M. T., Isabel, P., Carvalho, J. C. M. F., Seabra, R. M., & Proença da Cunha, A. (1999). Physicochemical attributes and pollen spectrum of Portuguese heather honeys. Food Chemistry, 66(4), 503-510. doi:10.1016/s0308-8146(99)00100-4Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4), 549-562. doi:10.1016/s0308-8146(98)00057-0Bosch, J., Del Pino, F. G., Ramoneda, J., & Retana, J. (1996). FRUITING PHENOLOGY AND FRUIT SET OF CAROB, CERATONIA SILIQUA L. (CESALPINACEAE). Israel Journal of Plant Sciences, 44(4), 359-368. doi:10.1080/07929978.1996.10676657Bouseta, A., Collin, S., & Dufour, J.-P. (1992). Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system. Journal of Apicultural Research, 31(2), 96-109. doi:10.1080/00218839.1992.11101268Cajka, T., Hajslova, J., Pudil, F., & Riddellova, K. (2009). Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal of Chromatography A, 1216(9), 1458-1462. doi:10.1016/j.chroma.2008.12.066Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas, M. A., & Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4), 1022-1030. doi:10.1016/j.foodchem.2008.06.036Conti, M. E., Stripeikis, J., Campanella, L., Cucina, D., & Tudino, M. B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1(1). doi:10.1186/1752-153x-1-14Custódio, L., Serra, H., Nogueira, J. M. F., Gonçalves, S., & Romano, A. (2006). Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS. Journal of Chemical Ecology, 32(5), 929-942. doi:10.1007/s10886-006-9044-9Cuevas-Glory, L., Ortiz-Vázquez, E., Pino, J. A., & Sauri-Duch, E. (2012). Floral classification of Yucatan Peninsula honeys by PCA & HS-SPME/GC-MS of volatile compounds. International Journal of Food Science & Technology, 47(7), 1378-1383. doi:10.1111/j.1365-2621.2012.02983.xDe Bolòs, O., & Molinier, R. (1984). Vegetation of the Pityusic Islands. Biogeography and Ecology of the Pityusic Islands, 185-221. doi:10.1007/978-94-009-6539-3_9De Maria, C. A. B., & Moreira, R. F. A. (2003). Compostos voláteis em méis florais. Química Nova, 26(1), 90-96. doi:10.1590/s0100-40422003000100016Guyot, C., Scheirman, V., & Collin, S. (1999). Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food Chemistry, 64(1), 3-11. doi:10.1016/s0308-8146(98)00122-8Herrera, J. (1988). Pollination Relationships in Southern Spanish Mediterranean Shrublands. The Journal of Ecology, 76(1), 274. doi:10.2307/2260469Jerković, I., & Marijanović, Z. (2010). Volatile Composition Screening of Salix spp. Nectar Honey: Benzenecarboxylic Acids, Norisoprenoids, Terpenes, and Others. Chemistry & Biodiversity, 7(9), 2309-2325. doi:10.1002/cbdv.201000021Jones, G. D., & Bryant, Jr, V. M. (2004). The use of ETOH for the dilution of honey. Grana, 43(3), 174-182. doi:10.1080/00173130410019497Kummerow, J. (1983). Comparative Phenology of Mediterranean-Type Plant Communities. Ecological Studies, 300-317. doi:10.1007/978-3-642-68935-2_17La‐Serna Ramos, I. E., & GÓmez Ferreras, C. (2006). Pollen and sensorial characterization of different honeys from El Hierro (Canary Islands). Grana, 45(2), 146-159. doi:10.1080/00173130600578658Del Carmen Llasat, M., Ramis, C., & Barrantes, J. (1996). The meteorology of high‐intensity rainfall events over the west Mediterranean region. Remote Sensing Reviews, 14(1-3), 51-90. doi:10.1080/02757259609532313Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59(4), 139-157. doi:10.1080/0005772x.1978.11097714Martins, R. C., Lopes, V. V., Valentão, P., Carvalho, J. C. M. F., Isabel, P., Amaral, M. T., … Silva, B. M. (2008). Relevant principal component analysis applied to the characterisation of Portuguese heather honey. Natural Product Research, 22(17), 1560-1582. doi:10.1080/14786410701825004Melliou, E., & Chinou, I. (2011). Chemical constituents of selected unifloral Greek bee-honeys with antimicrobial activity. Food Chemistry, 129(2), 284-290. doi:10.1016/j.foodchem.2011.04.047Pendleton, M. (2006). Descriptions of melissopalynological methods involving centrifugation should include data for calculating Relative Centrifugal Force (RCF) or should express data in units of RCF or gravities (g). Grana, 45(1), 71-72. doi:10.1080/00173130500520479Pérez, R. A., Sánchez-Brunete, C., Calvo, R. M., & Tadeo, J. L. (2002). Analysis of Volatiles from Spanish Honeys by Solid-Phase Microextraction and Gas Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry, 50(9), 2633-2637. doi:10.1021/jf011551rPersano Oddo, L., Piana, L., Bogdanov, S., Bentabol, A., Gotsiou, P., Kerkvliet, J., … von der Ohe, K. (2004). Botanical species giving unifloral honey in Europe. Apidologie, 35(Suppl. 1), S82-S93. doi:10.1051/apido:2004045Persano Oddo, L., & Piro, R. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38-S81. doi:10.1051/apido:2004049Piana, M. L., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Guyot Declerck, C. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35(Suppl. 1), S26-S37. doi:10.1051/apido:2004048Piasenzotto, L., Gracco, L., & Conte, L. (2003). Solid phase microextraction (SPME) applied to honey quality control. Journal of the Science of Food and Agriculture, 83(10), 1037-1044. doi:10.1002/jsfa.1502Radovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511-520. doi:10.1016/s0308-8146(00)00263-6RAMÓN-LACA, L., & MABBERLEY, D. J. (2004). The ecological status of the carob-tree (Ceratonia siliqua, Leguminosae) in the Mediterranean. Botanical Journal of the Linnean Society, 144(4), 431-436. doi:10.1111/j.1095-8339.2003.00254.xRetana, J., Ramoneda, J., Garcia Del Pino, F., & Bosch, J. (1994). Flowering phenology of carob,Ceratonia siliquaL. (Cesalpinaceae). Journal of Horticultural Science, 69(1), 97-103. doi:10.1080/14620316.1994.11515254Ricciardelli d’Albore, G. & Vorwohl, G. (1979). Mieles monoflorales en el Mediterráneo documentado con ayuda del análisis microscópico de mieles. Actas de XXVII Congreso Internacional de Apicultura, Athens, Greece, 14–20 September 1979, 201–208.Pilar de Sá‐Otero, M., Armesto‐Baztan, S., & DÍaz‐Losada, E. (2006). A study of variation in the pollen spectra of honeys sampled from the Baixa Limia‐Serra do Xurés Nature Reserve in north‐west Spain. Grana, 45(2), 137-145. doi:10.1080/00173130600708537Seijo, M. C., Jato, M. V., Aira, M. J., & Iglesias, I. (1997). Unifloral honeys of Galicia (north-west Spain). Journal of Apicultural Research, 36(3-4), 133-140. doi:10.1080/00218839.1997.11100939Terrab, A., Diez, M. J., & Heredia, F. J. (2003). Palynological, physico-chemical and colour characterization of Moroccan honeys: III. Other unifloral honey types. International Journal of Food Science and Technology, 38(4), 395-402. doi:10.1046/j.1365-2621.2003.00713.xTERRAB, A., PONTES, A., HEREDIA, F. J., & DÍEZ, M. J. (2004). A preliminary palynological characterization of Spanish thyme honeys. Botanical Journal of the Linnean Society, 146(3), 323-330. doi:10.1111/j.1095-8339.2004.00335.xTerrab, A., Valdés, B., & Josefa Díez, M. (2003). Pollen analysis of honeys from the Mamora forest region (NW Morocco). Grana, 42(1), 47-54. doi:10.1080/00173130310008580Thompson, J. D. (2005). Plant Evolution in the Mediterranean. doi:10.1093/acprof:oso/9780198515340.001.0001Von Der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18-S25. doi:10.1051/apido:2004050VORWOHL, G. (1964). DIE BEZIEHUNGEN ZWISCHEN DER ELEKTRISCHEN LEITFÄHIGKEIT DER HONIGE UND IHRER TRACHTMÄSSIGEN HERKUNFT. Annales de l’Abeille, 7(4), 301-309. doi:10.1051/apido:19640403Vorwohl, G. (1967). The microscopic analysis of honey, a comparison of its methods with those of the other branches of palynology. Review of Palaeobotany and Palynology, 3(1-4), 287-290. doi:10.1016/0034-6667(67)90061-

    Dysglycemias in pregnancy: from diagnosis to treatment. Brazilian consensus statement

    Get PDF
    There is an urgent need to find consensus on screening, diagnosing and treating all degrees of DYSGLYCEMIA that may occur during pregnancies in Brazil, considering that many cases of DYSGLYCEMIA in pregnant women are currently not diagnosed, leading to maternal and fetal complications. For this reason the Brazilian Diabetes Society (SBD) and the Brazilian Federation of Gynecology and Obstetrics Societies (FEBRASGO), got together to introduce this proposal. We present here a joint consensus regarding the standardization of clinical management for pregnant women with any degree of Dysglycemia, on the basis of current information, to improve medical assistance and to avoid related complications of Dysglycemia in pregnancy to the mother and the fetus. This consensus aims to standardize the diagnosis among general practitioners, endocrinologists and obstetricians allowing the dissemination of information in basic health units, public and private services, that are responsible for screening, diagnosing and treating disglycemic pregnant patients

    Measurement of the Tau Lepton Polarisation at LEP2

    Get PDF
    A first measurement of the average polarisation P_tau of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value P_tau = -0.164 +/- 0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.A first measurement of the average polarisation Pτ of tau leptons produced in e + e − annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value Pτ=−0.164±0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.A first measurement of the average polarisation P_tau of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value P_tau = -0.164 +/- 0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups

    Get PDF
    Background: Canagliflozin reduces the risk of kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, but effects on specific cardiovascular outcomes are uncertain, as are effects in people without previous cardiovascular disease (primary prevention). Methods: In CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation), 4401 participants with type 2 diabetes mellitus and chronic kidney disease were randomly assigned to canagliflozin or placebo on a background of optimized standard of care. Results: Primary prevention participants (n=2181, 49.6%) were younger (61 versus 65 years), were more often female (37% versus 31%), and had shorter duration of diabetes mellitus (15 years versus 16 years) compared with secondary prevention participants (n=2220, 50.4%). Canagliflozin reduced the risk of major cardiovascular events overall (hazard ratio [HR], 0.80 [95% CI, 0.67-0.95]; P=0.01), with consistent reductions in both the primary (HR, 0.68 [95% CI, 0.49-0.94]) and secondary (HR, 0.85 [95% CI, 0.69-1.06]) prevention groups (P for interaction=0.25). Effects were also similar for the components of the composite including cardiovascular death (HR, 0.78 [95% CI, 0.61-1.00]), nonfatal myocardial infarction (HR, 0.81 [95% CI, 0.59-1.10]), and nonfatal stroke (HR, 0.80 [95% CI, 0.56-1.15]). The risk of the primary composite renal outcome and the composite of cardiovascular death or hospitalization for heart failure were also consistently reduced in both the primary and secondary prevention groups (P for interaction &gt;0.5 for each outcome). Conclusions: Canagliflozin significantly reduced major cardiovascular events and kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, including in participants who did not have previous cardiovascular disease

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
    corecore