373 research outputs found

    Upper and lower treeline biogeographic patterns in semi-arid pinyon-juniper woodlands

    Get PDF
    none7siAim: Upper and lower treelines are particularly exposed to a changing climate. It has been hypothesized that upper treelines are constrained by growing season temperature, whereas lower tree lines are water limited. We expect different causal mechanisms of upper versus lower tree line formation to generate distinct patterns of spatial heterogeneity. Here, we compare dynamics, spatial patterns and shape complexity of upper and lower tree lines of semi‐arid pinyon‐juniper woodlands. Location: Toiyabe Range of the Nevada Great Basin (western US). Taxon: Pinus monophylla Torr. & FrĂ©m. and Juniperus osteosperma (Torr.). Methods: Within 20 sample plots (10 along the upper and 10 along the lower tree line), we mapped tree canopies through photointerpretation of high‐resolution imagery. We performed point pattern analyses to compare the spatial arrangement of trees and used LANDSAT 30‐year time series and NDVI to understand the vegetation dynamics of these ecotones. We adopted the surface roughness method to measure tree line shape complexity. Results: Lower tree lines were denser and showed a stronger trend of increasing NDVI change over the 1984–2015 period. Trees at the lower tree line were more strongly aggregated than at the upper tree line at spatial scales ranging from 15 to 65 meters. Shape complexity was higher at upper tree lines, expressed by a higher mean surface roughness; however, the spatial structures of upper and lower tree lines were similar. Main conclusions: Upper tree line expansion of pinyon‐juniper woodlands in the study area has been limited and highly variable, but lower tree line downslope expansion into adjacent shrub steppe vegetation was evident. The expected difference between energy‐ and water‐limited tree lines did not manifest in the observed spatial structures. Differences in tree line shape complexity were not significant, although lower tree lines exhibited less complex shapes, likely because they have been more strongly influenced by anthropogenic factors.The datasets generated and analysed during the current study are available in the Figshare repository, https://doi.org/10.6084/m9.figshare.11836284mixedGarbarino, Matteo; Malandra, Francesco; Dilts, Thomas; Flake, Sam; Montalto, Luigi; Spinsante, Susanna; Weisberg, Peter J.Garbarino, Matteo; Malandra, Francesco; Dilts, Thomas; Flake, Sam; Montalto, Luigi; Spinsante, Susanna; Weisberg, Peter J

    The SOPHIE search for northern extrasolar planets: VI. Three new hot Jupiters in multi-planet extrasolar systems

    Full text link
    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, PP = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.Comment: accepted in A&

    Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope

    Full text link
    An explosion on comet 17P/Holmes occurred on 2007 Oct 23, projecting particulate debris of a wide range of sizes into the interplanetary medium. We observed the comet using the Spitzer spectrograph on 2007 Nov 10 and 2008 Feb 27, and the photometer, on 2008 Mar 13. The fresh ejecta have detailed mineralogical features from small crystalline silicate grains. The 2008 Feb 27 spectra, and the central core of the 2007 Nov 10 spectral map, reveal nearly featureless spectra, due to much larger grains that were ejected from the nucleus more slowly. We break the infrared image into three components (size, speed) that also explain the temporal evolution of the mm-wave flux. Optical images were obtained on multiple dates spanning 2007 Oct 27 to 2008 Mar 10 at the Holloway Comet Observatory and 1.5-m telescope at Palomar Observatory. The orientation of the leading edge of the ejecta shell and the ejecta blob, relative to the nucleus, do not change as the orientation of the Sun changes; instead, the configuration was imprinted by the orientation of the initial explosion. The kinetic energy of the ejecta >1e21 erg is greater than the gravitational binding energy of the nucleus. We model the explosion as being due to crystallization and release of volatiles from interior amorphous ice within a subsurface cavity; once the pressure in the cavity exceeded the surface strength, the material above the cavity was propelled from the comet. The size of the cavity and the tensile strength of the upper layer of the nucleus are constrained by the observed properties of the ejecta; tensile strengths on >10 m scale must be greater than 10 kPa. The appearance of the 2007 outburst is similar to that witnessed in 1892, but the 1892 explosion was less energetic by a factor of about 20.Comment: 51 pages. Some figures compressed (see real journal for full quality). accepted by Icaru

    Search for giant planets in M67 I. Overview

    Full text link
    Precise stellar radial velocities are used to search for massive (Jupiter masses or higher) exoplanets around the stars of the open cluster M67. We aim to obtain a census of massive exoplanets in a cluster of solar metallicity and age in order to study the dependence of planet formation on stellar mass and to compare in detail the chemical composition of stars with and without planets. This first work presents the sample and the observations, discusses the cluster characteristics and the radial velocity (RV) distribution of the stars, and individuates the most likely planetary host candidates. We observed a total of 88 main-sequence stars, subgiants, and giants all highly probable members of M67, using four telescopes and instrument combinations. We investigate whether exoplanets are present by obtaining radial velocities with precisions as good as 10 m/s. To date, we have performed 680 single observations (Dec. 2011) and a preliminary analysis of data, spanning a period of up to eight years. Although the sample was pre-selected to avoid the inclusion of binaries, we identify 11 previously unknown binary candidates. Eleven stars clearly displayed larger RV variability and these are candidates to host long-term substellar companions. The average RV is also independent of the stellar magnitude and evolutionary status, confirming that the difference in gravitational redshift between giants and dwarfs is almost cancelled by the atmospheric motions. We use the subsample of solar-type stars to derive a precise true RV for this cluster. We finally create a catalog of binaries and use it to clean the color magnitude diagram (CMD). As conclusion, by pushing the search for planets to the faintest possible magnitudes, it is possible to observe solar analogues in open clusters, and we propose 11 candidates to host substellar companions.Comment: 11 pages, 10 figure

    Time quasi-periodic gravity water waves in finite depth

    Get PDF
    We prove the existence and the linear stability of Cantor families of small amplitude time quasi-periodic standing water wave solutions\u2014namely periodic and even in the space variable x\u2014of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem. The main difficulties are the fully nonlinear nature of the gravity water waves equations\u2014the highest order x-derivative appears in the nonlinear term but not in the linearization at the origin\u2014and the fact that the linear frequencies grow just in a sublinear way at infinity. We overcome these problems by first reducing the linearized operators, obtained at each approximate quasi-periodic solution along a Nash\u2013Moser iterative scheme, to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that are quasi-periodic in time. Then we apply a KAM reducibility scheme which requires very weak Melnikov non-resonance conditions which lose derivatives both in time and space. Despite the fact that the depth parameter moves the linear frequencies by just exponentially small quantities, we are able to verify such non-resonance conditions for most values of the depth, extending degenerate KAM theory

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    Get PDF
    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light curves using the difference-imaging method for the most complete field in the survey and carry out a quantitative comparison between the photometric precision achieved with both methods. The results show that differencephotometry light curves present an important improvement for stars with J > 16. We report an implementation on the box-fitting transit detection algorithm, which performs a trapezoid-fit to the folded light curve, providing more accurate results than the boxfitting model. We describe and optimize a set of selection criteria to search for transit candidates, including the V-shape parameter calculated by our detection algorithm. The optimized selection criteria are applied to the aperture photometry and difference-imaging light curves, resulting in the automatic detection of the best 200 transit candidates from a sample of ~475 000 sources. We carry out a detailed analysis in the 18 best detections and classify them as transiting planet and eclipsing binary candidates. We present one planet candidate orbiting a late G-type star. No planet candidate around M-stars has been found, confirming the null detection hypothesis and upper limits on the occurrence rate of short-period giant planets around M-dwarfs presented in a prior study. We extend the search for transiting planets to stars with J ≀ 18, which enables us to set a stricter upper limit of 1.1%. Furthermore, we present the detection of five faint extremely-short period eclipsing binaries and three M-dwarf/M-dwarf binary candidates. The detections demonstrate the benefits of using the difference-imaging light curves, especially when going to fainter magnitudes.Peer reviewe

    Novel Combination of Sorafenib and Celecoxib Provides Synergistic Anti-Proliferative and Pro-Apoptotic Effects in Human Liver Cancer Cells

    Get PDF
    Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex¼) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies

    Eosinophilic Enteritis Confined to an Ileostomy Site

    Get PDF
    Eosinophilic enteritis is a rather rare condition that can manifest anywhere from esophagus to rectum. Its description in the literature is sparse, but associations have been made with collagen vascular disease, malignancy, food allergy, parasitic or viral infections, inflammatory bowel disease, and drug sensitivity. We present the case of a 41-year-old male diagnosed with ulcerative colitis who underwent proctocolectomy with ileal pouch anal anastomosis and loop ileostomy formation utilizing SeprafilmÂź, who later developed eosinophilic enteritis of the loop ileostomy site. This is the first report of eosinophilic enteritis and its possible link to the use of bioabsorbable adhesion barriers
    • 

    corecore