506 research outputs found

    Scaling properties of the cosmic background plasma and radiation

    Full text link
    Scaling properties of the cosmic microwave background (CMB) radiation are studied using satellite (COBE-DMR maps), balloon-borne and ground-based (combined QMASK map) data. Quantitative consistency is found between the multiscaling properties of the COBE-DMR and QMASK CMB maps. Surprisingly, it is found that the observed CMB temperature multiscaling resembles quantitatively the multiscaling properties of fluid turbulence, that indicates primordial plasma turbulence as an origin of the CMB temperature space anisotropy

    On a Fast Solution Strategy for a Surface-Wire Integral Formulation of the Anisotropic Forward Problem in Electroencephalography

    Get PDF
    This work focuses on a quasi-linear-in-complexity strategy for a hybrid surface-wire integral equation solver for the electroencephalography forward problem. The scheme exploits a block diagonally dominant structure of the wire self block— that models the neuronal fibers self interactions—and of the surface self block—modeling interface potentials. This structure leads to two Neumann iteration schemes further accelerated with adaptive integral methods. The resulting algorithm is linear up to logarithmic factors. Numerical results confirm the performance of the method in biomedically relevant scenarios

    Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia.

    Get PDF
    Structural anomalies of white matter are found in various brain regions of patients with schizophrenia and bipolar and other psychiatric disorders, but the causes at the cellular and molecular levels remain unclear. Oxidative stress and redox dysregulation have been proposed to play a role in the pathophysiology of several psychiatric conditions, but their anatomical and functional consequences are poorly understood. The aim of this study was to investigate white matter throughout the brain in a preclinical model of redox dysregulation. In a mouse model with impaired glutathione synthesis (Gclm KO), a state-of-the-art multimodal magnetic resonance protocol at high field (14.1 T) was used to assess longitudinally the white matter structure, prefrontal neurochemical profile, and ventricular volume. Electrophysiological recordings in the abnormal white matter tracts identified by diffusion tensor imaging were performed to characterize the functional consequences of fractional anisotropy alterations. Structural alterations observed at peri-pubertal age and adulthood in Gclm KO mice were restricted to the anterior commissure and fornix-fimbria. Reduced fractional anisotropy in the anterior commissure (-7.5% ± 1.9, P<.01) and fornix-fimbria (-4.5% ± 1.3, P<.05) were accompanied by reduced conduction velocity in fast-conducting fibers of the posterior limb of the anterior commissure (-14.3% ± 5.1, P<.05) and slow-conducting fibers of the fornix-fimbria (-8.6% ± 2.6, P<.05). Ventricular enlargement was found at peri-puberty (+25% ± 8 P<.05) but not in adult Gclm KO mice. Glutathione deficit in Gclm KO mice affects ventricular size and the integrity of the fornix-fimbria and anterior commissure. This suggests that redox dysregulation could contribute during neurodevelopment to the impaired white matter and ventricle enlargement observed in schizophrenia and other psychiatric disorders

    Dispersion and collapse in stochastic velocity fields on a cylinder

    Get PDF
    The dynamics of fluid particles on cylindrical manifolds is investigated. The velocity field is obtained by generalizing the isotropic Kraichnan ensemble, and is therefore Gaussian and decorrelated in time. The degree of compressibility is such that when the radius of the cylinder tends to infinity the fluid particles separate in an explosive way. Nevertheless, when the radius is finite the transition probability of the two-particle separation converges to an invariant measure. This behavior is due to the large-scale compressibility generated by the compactification of one dimension of the space

    Probability Density Function of Longitudinal Velocity Increment in Homogeneous Turbulence

    Full text link
    Two conditional averages for the longitudinal velocity increment u_r of the simulated turbulence are calculated: h(u_r) is the average of the increment of the longitudinal Laplacian velocity field with u_r fixed, while g(u_r) is the corresponding one of the square of the difference of the gradient of the velocity field. Based on the physical argument, we suggest the formulae for h and g, which are quite satisfactorily fitted to the 512^3 DNS data. The predicted PDF is characterized as (1) the Gaussian distribution for the small amplitudes, (2) the exponential distribution for the large ones, and (3) a prefactor before the exponential function for the intermediate ones.Comment: 4 pages, 4 figures, using RevTeX3.

    The Origin of Magnetic Fields in Galaxies

    Full text link
    Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial universe (assumed to be random), predicted by the Fluctuation-Dissipation-Theorem, predicts ∌0.034ÎŒG\sim 0.034 \mu G fields over ∌0.3\sim 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the Fluctuation-Dissipation-Theorem are not completely random, microgauss fields over regions ≳0.34\gtrsim 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in â‰Č109\lesssim 10^{9} years in high redshift galaxies.Comment: 10 pages, 3 figure

    On the circum(sub)stellar environment of brown dwarfs in Taurus

    Get PDF
    Aims : We want to investigate whether brown dwarfs (BDs) form like stars or are ejected embryos. We study the presence of disks around BDs in the Taurus cloud, and discuss implications for substellar formation models. Methods : We use photometric measurements from the visible to the far infrared to determine the spectral energy distributions (SEDs) of Taurus BDs. Results: We use Spitzer color indices, Halpha as an accretion indicator, and models fit to the SEDs in order to estimate physical parameters of the disks around these BDs. We study the spatial distribution of BDs with and without disks across the Taurus aggregates, and we find that BDs with and without disks are not distributed regularly across the Taurus cloud. Conclusions: We find that 48%+/- 14% of Taurus BDs have a circumstellar disk signature, a ratio similar to recent results from previous authors in other regions. We fit the SEDs and find that none of the disks around BDs in Taurus can be fitted convincingly with a flaring index beta = 0, indicating that heating by the central object is efficient and that the disks we observe retain a significant amount of gas. We find that BDs with disks are proportionally more numerous in the northern Taurus filament, possibly the youngest filament. We do not find such a clear segregation for classical T Tauri stars (CTTS) and weak-lined T Tauri stars (WTTS), suggesting that, in addition to the effects of evolution, any segregation effects could be related to the mass of the object. A by-product of our study is to propose a recalibration of the Barrado y Navascues & Martin (2003) accretion limit in the substellar domain. The global shape of the limit fits our data points if it is raised by a factor 1.25-1.30.Comment: 11 pages, 5 figures, A&A accepte

    The Taurus Spitzer Survey: New Candidate Taurus Members Selected Using Sensitive Mid-Infrared Photometry

    Get PDF
    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in our ~44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ~20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously-identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and AGN.Comment: Accepted to ApJS. Two large online-only figures available with the preprint here: http://web.ipac.caltech.edu/staff/rebull/research.htm

    Burgers velocity fields and dynamical transport processes

    Full text link
    We explore a connection of the forced Burgers equation with the Schr\"{o}dinger (diffusive) interpolating dynamics in the presence of deterministic external forces. This entails an exploration of the consistency conditions that allow to interpret dispersion of passive contaminants in the Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation ∂tρ=−∇(v⃗ρ)\partial_t\rho =-\nabla (\vec{v}\rho), where v⃗=v⃗(x⃗,t)\vec{v}=\vec{v}(\vec{x},t) stands for the Burgers field and ρ\rho is the density of transported matter, is at variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterisation of the diffusive matter transport that is governed by Burgers velocity fields. The result extends both to the approximate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible medium.Comment: Latex fil

    AKARI observations of ice absorption bands towards edge-on young stellar objects

    Get PDF
    To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 mu m to 5 mu m, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 mu m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 mu m provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN-could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H2O ice band towards ASR41 and 2MASSJ 1628137-243139, which are edge-on class II disks. We also detect H2O ice and CO2 ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur
    • 

    corecore