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Abstract

Background: Structural anomalies of white matter are found in various brain regions of patients with schizophrenia and 
bipolar and other psychiatric disorders, but the causes at the cellular and molecular levels remain unclear. Oxidative stress 
and redox dysregulation have been proposed to play a role in the pathophysiology of several psychiatric conditions, but 
their anatomical and functional consequences are poorly understood. The aim of this study was to investigate white matter 
throughout the brain in a preclinical model of redox dysregulation.
Methods: In a mouse model with impaired glutathione synthesis (Gclm KO), a state-of-the-art multimodal magnetic 
resonance protocol at high field (14.1 T) was used to assess longitudinally the white matter structure, prefrontal 
neurochemical profile, and ventricular volume. Electrophysiological recordings in the abnormal white matter tracts 
identified by diffusion tensor imaging were performed to characterize the functional consequences of fractional 
anisotropy alterations.
Results: Structural alterations observed at peri-pubertal age and adulthood in Gclm KO mice were restricted to the anterior 
commissure and fornix-fimbria. Reduced fractional anisotropy in the anterior commissure (-7.5% ± 1.9, P < .01) and fornix-
fimbria (-4.5% ± 1.3, P < .05) were accompanied by reduced conduction velocity in fast-conducting fibers of the posterior limb of 
the anterior commissure (-14.3% ± 5.1, P < .05) and slow-conducting fibers of the fornix-fimbria (-8.6% ± 2.6, P < .05). Ventricular 
enlargement was found at peri-puberty (+25% ± 8 P < .05) but not in adult Gclm KO mice.
Conclusions: Glutathione deficit in Gclm KO mice affects ventricular size and the integrity of the fornix-fimbria and anterior 
commissure. This suggests that redox dysregulation could contribute during neurodevelopment to the impaired white matter 
and ventricle enlargement observed in schizophrenia and other psychiatric disorders.
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Introduction
Abnormal redox homeostasis and oxidative stress have been 
proposed to play a role in the etiology of several psychiatric dis-
orders. In recent years, a convincing body of evidence has been 
gathered for bipolar and anxiety disorders, depression, autism, 
and specially schizophrenia (see comprehensive reviews in Ng 
et al., 2008; Smaga et al., 2015). Oxidative stress and altered anti-
oxidant systems have been considered a hallmark of schizo-
phrenia at least in subgroups of patients (Do et al., 2009; Yao and 
Keshavan, 2011; Flatow et al., 2013; Fournier et al., 2014). Altered 
expression of genes related to oxidative stress (Middleton et al., 
2002; Prabakaran et al., 2004), oxidative damage to lipids (Wang 
et al., 2009) and nucleic acids (Che et al., 2010), as well as reduced 
glutathione levels in the nervous tissue of patients (Do et  al., 
2000; Yao and Leonard, 2006; Gawryluk et al., 2011) could contrib-
ute to the pathology, but may as well be a consequence of years 
of disability and/or neuroleptic medication (Szabó et al., 1983; 
Middleton et al., 2002). In this regard, increased lipid peroxida-
tion, altered activity of antioxidant enzymes, and decreased glu-
tathione levels in the plasma of drug-naive patients (Mahadik 
et al., 1998; Raffa et al., 2009) suggest that impaired redox home-
ostasis is not a consequence of chronicity. Impaired glutathione 
synthesis (Tosic et al., 2006; Gysin et al., 2007) and metabolism 
(Gravina et al., 2010; Rodríguez-Santiago et al., 2010) in schizo-
phrenia may have a genetic origin. Moreover, dysfunction of pro-
teins coded by other risk genes, including Disc1 (Park et al., 2010; 
Johnson et al., 2013), Dysbindin (Gokhale et al., 2012), Neuregulin 
(Goldshmit et al., 2001), and hypo-function of NMDA receptors 
(Papadia et  al., 2008; Baxter et  al., 2015), have been shown to 
affect the antioxidant systems and/or cause oxidative stress.

Magnetic resonance (MR) imaging (MRI), and especially diffu-
sion tensor imaging (DTI), have provided a powerful tool to non-
invasively study white matter (WM) and thus facilitated the study 
of the anatomical basis of brain connectivity in vivo. Structural 
anomalies of WM have been reported in several psychiatric dis-
orders, including schizophrenia, bipolar disorder, depression, 
and autism (Thomason and Thompson, 2011; Shizukuishi et al., 
2013), with affected areas often overlapping between different 
conditions (White et al., 2008b). This suggests that similar path-
ological mechanisms may be at the origin of these alterations. 
Schizophrenia in particular is thought to result from a dysfunc-
tional integration or disconnection within the brain (Friston 
and Frith, 1995). Anomalies in WM structure have been reported 
at both chronic (Ellison-Wright and Bullmore, 2009) and early 
stages of the disorder (Samartzis et al., 2013; Yao et al., 2013). 
Reduced myelin content measured by other myelin-sensitive 
MRI techniques (Flynn et al., 2003; Du et al., 2013) suggests that 
deficient myelination may underlie these abnormalities. This 
hypothesis is supported by the reduced number of oligodendro-
cytes (Hof et al., 2002; Byne et al., 2006; Vostrikov et al., 2007), 
abnormal myelin ultra-structure (Miyakawa et al., 1972; Uranova 
et al., 2001), and altered myelin-related gene expression (Hakak 
et al., 2001; Tkachev et al., 2003; Roussos et al., 2012) found in 
postmortem brains of patients.

Based on the susceptibility of oligodendrocytes to oxidative 
stress (Back et al., 1998) and on the regulation of their prolifera-
tion and differentiation by the intracellular redox state (Smith 
et  al., 2000; French et  al., 2009) and glutathione levels (Monin 
et  al., 2014), we hypothesize that redox dysregulation could 
contribute to WM pathology in schizophrenia, the disorder in 
which both have been more frequently reported, but possibly 
also in other neurodevelopmental conditions. This hypothesis 
is supported by our observations that prepubertal mice with 

low glutathione levels (Gclm KO mice, which carry a functional 
deletion in the modulatory subunit of the glutamate-cysteine 
ligase, the key enzyme in the synthesis of glutathione) display 
delayed oligodendrocyte maturation and myelination in the 
anterior cingulate cortex (Monin et  al., 2014). Accumulation 
of N-acetylaspartate in the prefrontal cortex (Duarte et  al., 
2011) of these mice suggests myelination deficits, since 
N-acetylaspartate is required by oligodendrocytes to synthesize 
myelin (Chakraborty et al., 2001; Kirmani et al., 2002). Moreover, 
in young human adults, we have found a positive correlation 
between the glutathione levels in the anterior cingulate cortex 
and the fractional anisotropy (FA) along the cingulum (Monin 
et al., 2014).

The present study assesses the impact of a glutathione defi-
cit on WM integrity in a longitudinal MRI study of the brain of 
Gclm KO mice from peri-puberty to full adulthood. Using cut-
ting-edge multimodal MR at high magnetic field, we investigated 
WM structure throughout the brain with DTI, the neurochemical 
profile in the anterior cortex with MR spectroscopy (MRS) and 
the ventricular volume with T2-weighted MRI, as enlargement 
of the ventricles is a morphological hallmark of schizophrenia 
pathology but is also found in other psychiatric diseases such 
as bipolar disorder and autism (Arnone et al., 2009; Lange et al., 
2015). Further functional evaluation of WM tracts displaying 
abnormal DTI parameters was performed with standard electro-
physiological methods. Such reverse translational approach will 
help to understand the functional significance of the anoma-
lies in DTI-derived parameters found in patients and screen for 
underlying pathological mechanisms.

Methods

Animals

Mice (Yang et al., 2002) were bred and kept in a temperature- and 
humidity-controlled facility under a 12-h-light/-dark cycle with 
free access to food and water. All experiments were approved by 
the local veterinary authority.

MRS and MRI

All data were acquired on a 14.1 T horizontal-bore magnet 
(Magnex Scientific, Abingdon, UK) equipped with a 12-cm inner 
diameter gradient (400 mT/m in 200 µs) and interfaced with a 
DirectDrive console (Agilent Technologies, Palo Alto, CA). Radio 
frequency transmission and reception was achieved with a 
home-built quadrature surface coil of 18 mm diameter with a 
geometry adapted to the mouse brain. Male Gclm KO (n = 15) and 
WT (n = 16) mice were scanned longitudinally at postnatal days 
(PNDs) 40, 97, and 180. Each scanning session consisted of MRS, 
DTI, and anatomical MRI acquisitions amounting to 4 hours 
total scanning time per animal. Mice were anesthetized with 1% 
to 1.5% isoflurane in 1:1 air:O2 mixture and fixed in a home-
built holder. Body temperature was maintained at 37.0 ± 0.5°C 
by warm water circulation. The mouse brain was positioned 
in the iso-center of the magnet, and field homogeneity was 
achieved before each acquisition with FAST(EST)MAP (Gruetter 
and Tkác, 2000). MRS acquisition and analysis were performed 
as detailed before (Duarte et  al., 2011) in a volume of inter-
est (0.9 × 4 × 1.6 mm3) placed in the prefrontal cortex. To ensure 
reproducible position within the scanner across animals, a sag-
ittal image was acquired to place the top of the rhinal fissure at 
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+4 mm of the iso-center in the bore longitudinal direction. The 
center of the MRS voxel was then placed at +2 mm of the iso-
center, so the voxel edges were at 2.8 and 1.2 mm from the rhinal 
fissure, respectively; Bregma +0.76 and +2.36 coordinates in the 
mouse brain atlas (Paxinos and Franklin, 2001). In the other 2 
axes, the voxel was centered manually in the midline, and its 
bottom edge was aligned to the top of the corpus callosum.

Diffusion-weighted images were acquired using a pulse field 
gradient sequence with TR = 2 seconds, TE = 31.35 milliseconds, 
field-of-view = 20 x 20 mm, matrix size = 128 x 64, slice thick-
ness = 0.6 mm, number of slices = 15, number of averages = 4, 6 
diffusion directions (-1,1,0; 0,1,1; -1,0,1; -1,-1,0; 0,-1,1; 1,0,1; and 
their opposites to cancel b-value cross terms; Neeman et  al., 
1991) and b-value = 1000 mm2/s. Anatomical scans were acquired 
using a fast spin-echo sequence (TR = 2 seconds, TE = 43.36 mil-
liseconds, Echo Train Length  =  8, field-of-view  =  20 x 20 mm, 
matrix size  =  256 x 256, slice thickness  =  0.6 m, number of 
slices = 15, number of averages = 20). To ensure reproducibility 
of the area imaged across animals, the first slice of the DTI and 
anatomical images was centered at the top of the rhinal fissure.

MRI Analysis

A tensor was fitted to each voxel in the diffusion-weighted 
images using FSL Dtifit (Behrens et al., 2003), and maps of FA and 
radial, axial, and mean diffusivities (RD, AD, MD) were derived. 
Cohort MRI studies require registration of images to a common 
space of reference to enable the analysis of corresponding spa-
tial localizations across subjects. As registration target, we used 
a home-built atlas of the C57Bl/6 mouse brain segmented in 27 
regions of interest (ROI) (supplementary Figure 1). The anatomi-
cal scan from each animal was registered to the atlas using FSL 
FLIRT and FNIRT (Jenkinson and Smith, 2001; Jenkinson et al., 
2002; Andersson et  al., 2007), and the inverse of the transfor-
mations was used to transport the segmented atlas into each 
animal’s space. FA, MD, RD, and AD maps were then multiplied 
by the back-transformed binary masks to obtain average val-
ues within each ROI for each animal. Ventricular volume was 
assessed by manual segmentation of the T2-weighted anatomi-
cal images using FSLview (all FSL programs were provided by 
FMRIB’S Software Tools, Oxford, UK).

Electrophysiology

Adult mice (90 ± 10 days of age) were used for the electrophysi-
ological experiments. Recordings were performed on horizon-
tal brain slices in which fibers from the corpus callosum (CC), 
fimbria-fornix (FF), and both anterior and posterior limbs of 
the anterior commissure (AC) run longitudinal to the slic-
ing plane. The CC was studied within the same slice as the FF; 
this corresponded to the posterior part of the genu of the CC. 
Experiments were performed at 28°C to slow down conduction 
velocity and thus allow better separation between the action 
potentials generated by fast-conducting and slow-conducting 
fibers. The precise distance between the stimulation electrode (a 
bipolar tungsten electrode placed within the WM tract) and the 
recording glass electrode was measured with a calibrated ocu-
lar micrometer. The recording electrode was lowered within the 
WM tract until the compound action potential (CAP), induced 
by a 100-µs bipolar voltage pulse, reached maximum amplitude. 
Stimulations evoked 2 distinct CAPs, associated respectively 
with fast-conducting and slow-conducting fibers (supplemen-
tary Figure 2). The relationships between the stimulus intensity 
and CAP amplitude, the conduction velocity, and the refractory 

period for the fast- and slow-conducting fibers of each WM 
tract were measured (see supplementary Figure 3 for methods 
regarding evaluation of the refractory period).

Statistical Analyses

Statistical analyses were performed in R (R Foundation for 
Statistical Computing, 2012). Spectroscopy data were analyzed 
by fitting a mixed-effects linear model to the concentration 
of each metabolite using genotype, age, and their interaction 
as fixed effects. As random effect, we used intercepts for each 
subject. P-values were obtained from likelihood ratio tests of 
a full-model against a model without the effect in question. 
Significant genotype-age interactions were analyzed posthoc 
with unpaired t tests between genotypes at each age applying 
Holm correction for the 3 comparisons. The same methods were 
used to analyze each DTI-derived diffusivity parameters (FA, RD, 
AD, MD) applying Holm correction for the 27 ROIs. Visual inspec-
tion of residual plots revealed no deviation from normality. 
Autocorrelation functions were fitted to all repeated measure-
ments data to assess independence between ages. F-ratio tests 
were performed to assess homoscedasticity.

A mixed-effects linear model was also fitted to the volumet-
ric data as described above, but we detected heteroscedasticity 
between genotypes. Thus, we analyzed the effect of age within 
each genotype with a 1-way ANOVA and the effect of genotype 
with 3 unpaired t tests (at each age independently with Welch 
approximation to correct for heteroscedasticity).

Conduction velocity and refractory period were compared 
between genotypes using independent t tests, and the relation-
ship between stimulus intensity and CAP amplitude (normal-
ized or absolute) was compared between genotypes using a 
Generalized Additive Mixed Model with a random effect at the 
individual level to take into account the interdependence of the 
responses to different stimulus intensities within a fiber tract of 
the same individual.

Results

To determine major structural changes, we measured ventricu-
lar volume using T2-weighted MRI. Ventricular volume displayed 
higher variability in KO than in WT mice (F-ratio = 2.9, P = .04) 
(Figure 1). An increase in ventricular size with age was confirmed 
by analyzing separately the data from WT (F1,28 = 98.2, P < .0001) 
and KO mice (F1,30 = 26.9, P < .0001). T tests between genotypes at 
each age (correcting for the unequal variances) revealed signifi-
cantly larger ventricular volume in KO compared with WT mice 
at PND 40 (+25.0% ± 8.1, P = .02), a trend at PND 97 (+17.0% ± 6.4, 
P = .05), but not at PND 180 (+6.7% ± 7.4, P = .5).

To validate and extend previous findings observed during 
development in Gclm KO mice (Duarte et al., 2011), we assessed 
the concentrations of 20 metabolites in the prefrontal cortex of 
KO and WT mice at peri-puberty and young and full adulthood 
(Figure 2). Significant differences between genotypes were found 
for glutathione (-84.7% ± 5.1 in KO, P < .0001), N-acetylaspartate 
(+8.7% ± 2.3, P = .0005), glutamine/glutamate ratio (+11.8% ± 5.3, 
P = .03), and alanine (+11.3% ± 3.4, P = .003). Lactate showed a 
significant interaction between genotype and age (P = .01), and 
posthoc t tests showed a significant difference between geno-
types at PND 40 (+39.8% ± 6.1 in KO, P = .042) and 97 (+68.9% ± 8.9, 
P = .002) but not at 180 (-4.6% ± 6.8, P = .79).

To determine anomalies in WM integrity, we analyzed DTI-
derived diffusivity parameters in 27 ROIs throughout the brain 
of Gclm KO and WT mice at PND 40, 97, and 180. We found no 
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significant interaction of genotype with age in any of the diffu-
sivity parameters or ROIs analyzed. A significant increase of FA 
with age in 22 ROIs was accompanied by a decrease of RD in 6 of 
them. Between genotypes, lower FA in the AC (one region com-
prising both the anterior and posterior limbs, -7.5% ± 1.9, P = .005) 
and FF (-4.5% ± 1.3, P = .03) of KO relative to WT mice attained 
statistical significance after Holm correction for multiple testing 
(Table 1, Figure 3). Of all other parameters analyzed (RD, AD, and 
MD; supplementary Tables 1–3), only an increase of RD in the FF 
was detected in KO compared with WT mice (+6.6% ± 1.7, P = .01) 
(Figure 3).

To assess the functional consequences of the structural 
anomalies detected in the DTI experiment, we performed elec-
trophysiological recordings within the FF and AC and within the 
CC as a negative control. The anterior and posterior limbs of the 
AC were assessed separately, while insufficient resolution did 
not allow this in the DTI experiment. In each WM tract, electri-
cal stimulation evoked 2 distinct CAPs, associated respectively 
with fast- and slow-conducting fibers (supplementary Figure 2). 
However, the CAP amplitude from the slow-conducting fibers 
was much smaller (even absent in 2 of 11 cases) in the poste-
rior than in the anterior part of the FF (supplementary Figure 2). 
Therefore, separate recordings were systematically performed 
within both parts of the FF. We found a small but significant 
decrease in the conduction velocity along the fast-conducting 
fibers in the posterior limb (-14.3% ± 5.1, P = .024) of the AC and the 
slow-conducting fibers of the posterior part of the FF (-8.6% ± 2.6, 
P = .027) in KO compared with WT mice (Figure 4), but there was 
no alteration in the CC. The refractory period was not affected in 
either fast- or slow-conducting fibers of the AC or FF in Gclm KO 
mice (supplementary Figure 3). The relationship between stim-
ulus intensity and absolute CAP amplitude was not different 
between genotypes in any WM tracts (supplementary Figure 4). 

However, when the CAP amplitude was normalized to the maxi-
mal response to render the response-dose independent of the 
number and density of excited fibers, the relationship between 
stimulus intensity and normalized CAP amplitude was signifi-
cantly different between genotypes for the fast-conducting fib-
ers of the posterior limb (P = .046) and the slow-conducting fibers 
of the anterior limb of the AC (P = .004) (supplementary Figure 5). 
These results suggest alterations of physical properties (such 
as axonal diameter) in these fibers. Together, these data reveal 
subtle alterations within FF and AC but not CC of KO mice, thus 
confirming a functional outcome of the structural anomalies 
detected by DTI.

Discussion

The present longitudinal multimodal MR study at 14.1 T and 
follow-up electrophysiological experiments demonstrated neu-
rochemical, structural, and functional anomalies in Gclm KO 
mice, a model of redox dysregulation relevant to schizophrenia 
and other psychiatric disorders. These mice displayed small 
but significant alterations in WM structure of the FF and AC as 
assessed by DTI from peri-puberty onwards. Reduced conduction 

Figure  2. Neurochemical alterations in the cortex of Gclm KO mice relative 

to controls (out of the whole neurochemical profile analyzed). Mean ± SEM are 

shown. *P < .05, significant genotype effect. Top left panel shows the position of 

the voxel used for the acquisition.
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Figure 1. Ventricular volume in Gclm KO and wild-type (WT) mice along devel-

opment. Each box plot depicts group average (horizontal black lines), inter-quar-

tile range (box), and 95% confidence interval (whiskers). *P < .05 significant effect 

of genotype, unpaired 2-tailed t test with Welch approximation to correct for 

heteroscedasticity.
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velocity along both tracts was consistent with FA alterations. 
Ventricular enlargement and neurochemical profile anoma-
lies were also found in peri-pubertal Gclm KO mice, but some 

tended to normalize at full adulthood. This highlights the criti-
cal role of the redox system during the development of brain 
structures known to be affected in psychiatric disorders such as 

Figure 3. Anomalies in diffusivity parameters derived from diffusion tensor imaging (DTI) in Gclm KO mice. Fractional anisotropy (FA) in the anterior commissure (AC) 

(A) and fimbria-fornix (FF) (B) and radial diffusivity (RD) in the AC (C) and FF (D) along the development of Gclm KO and wild-type (WT) mice. The graphs depict group 

average ± SEM. *P < .05 for genotype effect corrected for multiple comparisons (see Methods). The right panel presents FA (E-F) and RD (G-H) images from a representative 

animal. Highlighted for spatial reference are the AC in blue (E,G) and the FF in yellow (F,H).

Table 1. Mean FA Values Per ROI and Genotype, Difference between Genotypes, and Standard Error of the Difference Estimated by a Mixed-
Effects Linear Model Using Genotype and Age as Fixed Factors and Intercepts for Each Subject as Random Factor

Region of interest Mean WT Mean KO WT-KO (%) WT-KO SD (%) p p corrected

Fornix and Fimbria 0.43 0.41 4.5 1.3 0.001 *0.034
Internal Capsule and Pallidum 0.41 0.40 1.6 0.8 0.054 1
Dorsal Hippocampal Commissure 0.40 0.39 3.3 1.5 0.023 0.629
Medulla and Pons 0.38 0.36 5.4 3.1 0.08 1
Corpus Callosum 0.37 0.37 0.7 1.6 0.641 1
Anterior Commissure 0.31 0.28 7.5 1.9 0 *0.005
Septum 0.29 0.31 -4.2 1.4 0.004 0.096
Cingulum 0.29 0.29 -2.6 1.2 0.028 0.746
Midbrain 0.28 0.28 -0.9 1.7 0.587 1
External Capsule 0.27 0.26 1.7 1.1 0.122 1
Thalamus 0.24 0.24 0.7 1.0 0.496 1
Basal Ganglia 0.24 0.24 -1.8 1.9 0.317 1
Superior Colliculi 0.23 0.23 0.4 2.1 0.846 1
Subiculum 0.23 0.24 -5.0 3.5 0.147 1
Hypothalamus 0.23 0.22 3.8 2.3 0.098 1
Amygdala and Amygdaloid 0.23 0.22 0.8 2.8 0.766 1
Olfactory Nucleus 0.22 0.23 -4.9 2.0 0.018 0.476
Dorsal Raphe 0.21 0.22 -3.9 3.3 0.233 1
Entorhinal, Piriform and Insular Cortex 0.21 0.21 -0.9 1.3 0.485 1
Orbital Cortex 0.20 0.21 -3.8 1.5 0.011 0.308
Periaqueductal Gray 0.20 0.21 -5.6 2.3 0.013 0.356
Frontal Association and Motor Cortex 0.18 0.18 -1.8 1.2 0.127 1
Caudate and Putamen 0.17 0.18 -2.4 1.5 0.098 1
Prelimbic and Cingulate Cortex 0.17 0.17 -0.8 1.2 0.501 1
Sensory and Visual Cortex 0.16 0.17 -4.5 2.0 0.03 0.806
Dorsal Hippocampus 0.16 0.16 -0.4 2.0 0.847 1
Ventral Hippocampus 0.14 0.14 -2.1 3.3 0.526 1

The first and second columns are calculated by averaging the values of the 3 ages for each animal and then the average of all animals of the respective genotype. The 

third column is calculated as (mean WT – mean KO) x 100/mean WT. The fourth column shows the SD of the difference (mean WT – mean KO) also in percentage of 

mean WT. P-values for genotype differences from the likelihood ratio tests before and after correction for multiple comparisons are given in the fifth and sixth columns, 

respectively.
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schizophrenia. Interestingly, a parallel DTI study in early psycho-
sis patients revealed similar alterations in the FF (P. S. Baumann, 
A. Griffa, M. Fournier, C. Ferrari, L. Alameda, M. Cuenod, J.P. Thiran, 
P. Hagmann, K.Q. Do, and  P. Conus, unpublished observations).

Enlarged Ventricles

Gclm KO mice displayed ventricular enlargement at peri-puber-
tal age and young adulthood, but not later. Ventricular enlarge-
ment is a neuroanatomical hallmark of schizophrenia pathology 
(Wright et al., 2000; Shenton et al., 2001) present already in first-
episode patients (Steen et  al., 2006; Vita et  al., 2006). Likewise, 
both bipolar adolescents and adults with psychotic symptoms 
show enlarged ventricles (Edmiston et  al., 2011). Interestingly, 
Buckman and collaborators (1987) found a strong negative corre-
lation between glutathione peroxidase activity in blood cells and 
ventricular volume in schizophrenia patients. These data suggest 
a link between oxidative stress and ventricular enlargement, but 
they could also be associated with psychotic symptoms, since 
decreased glutathione peroxidase activity in blood cells is found 
during acute relapse and in chronic inpatients but not in stable 
outpatients or during first-episode psychosis (Flatow et al., 2013). 
Our data suggest that redox imbalance caused by a glutathione 
deficit could be implicated in the ventricular enlargement dur-
ing development, but not necessarily in adulthood as observed 
in bipolar (Strakowski et  al., 2002), autistic (Lange et  al., 2015), 
and chronic schizophrenia (Kempton et al., 2010) patients. The 
Gclm- KO model addresses only one risk factor, the genetic one. 
Thus, the ventricle enlargement anomaly could be compensated 
in adulthood in the absence of additional genetic and/or envi-
ronmental risks, as is likely the case in patients.

Altered Neurochemical Profile

Our MRS results pointed to altered metabolism in the cortex of 
Gclm KO mice. They confirmed that many alterations observed 
previously in young Gclm KO mice (Duarte et  al., 2011) were 
still present in young adults, though some tended to normal-
ize later. The increase in glutamine/glutamate ratio, lactate, 
and N-acetylaspartate concentrations suggest alterations in the 
glutamatergic neurotransmission system (Duarte et  al., 2011) 
and in the metabolic coupling between neurons and glia (for 
review, see Tranberg et al., 2004; Yang et al., 2014). The elevated 
N-acetylaspartate level is of particular interest in the context of 
the present study, since N-acetylaspartate synthesized in neu-
rons is used by oligodendrocytes for myelin production (Moffett 
et al., 2013). Although N-acetylaspartate accumulation may sug-
gest an impairment of axon-glia interactions, this remains spec-
ulative, as N-acetylaspartate concentration cannot be measured 
in vivo in the same WM tracts.

Structural and Functional WM Anomalies

DTI quantifies water displacement within a tissue to probe micro-
structure, especially in WM where water movement is constrained 
by the myelin sheaths wrapping the axons. In WM, both de- and 
dys-myelination cause an increase of radial diffusivity–the magni-
tude of diffusion perpendicular to the main tract orientation–and 
a reduction in diffusion anisotropy (Song et al., 2002; Harsan et al., 
2006; Ou et al., 2009; Ruest et al., 2011). Although DTI measure-
ments are altered along many WM tracts in schizophrenia, depres-
sion, anxiety, and bipolar and other disorders (Thomason and 
Thompson, 2011; Shizukuishi et al., 2013), the underlying causes 
of these structural anomalies and their functional consequences 

Figure 4. Conduction velocity along the fast- (A) and slow-conducting fibers (B) 

in the corpus callosum (CC), the fornix-fimbria (FF), and the anterior commissure 

(AC) of adult Gclm KO and wild-type (WT) mice. Mean ± SEM are shown (n = 8–11/

group). *P < .05 unpaired 1-tailed t test. Traces (C-G) are representative recordings 

of compound action potentials (CAPs) evoked in each of these fiber tracts in Gclm 

KO and WT mice. Horizontal bars: 2 ms; vertical bars: 1 mV; d is the measured 

distance between the stimulating and recording electrodes. pFF, posterior part 

of FF; aFF, anterior part of FF; aAC, anterior limb of AC; pAC posterior limb of AC.
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remain unclear. We demonstrated that the modest but significant 
FA decrease within the FF and AC of Gclm KO mice is associated 
with reduced conduction velocity. By contrast, DTI parameters 
and conduction velocity appeared normal in the CC. The mech-
anism by which the conduction velocity is decreased in the AC 
and FF is currently unknown. In both the anterior and posterior 
limbs of the AC of KO mice, the conduction velocity was or tended 
to be lower in the fast- (putatively myelinated) but not slow-con-
ducting fibers (putatively not or less myelinated). This suggests 
anomalies at the level of the myelin sheath and/or the interplay 
between oligodendrocytes and axons (Ritter et al., 2013). In the FF 
of KO mice, however, the reduced FA may be in part independent 
of oligodendrocytes, since the conduction velocity was affected 
in slow-conducting fibers, which likely represent non- or weakly 
myelinated axons. It is counter-intuitive, though, that a radial dif-
fusivity increase in Gclm KO mice–which is typically considered a 
sign of myelin alteration–attained statistical significance in the FF. 
In the AC, in contrast, this was only true before the stringent cor-
rection for multiple comparisons was applied. Together, our data 
highlight that even a modest alteration of DTI parameters in a WM 
tract can be associated with a small reduction of axonal conduc-
tion not exclusively restricted to the myelinated fibers.

Vulnerability of the FF and AC to Redox 
Dysregulation

Our data revealed that the FF and AC are vulnerable to a defi-
cit in glutathione. Based on DTI parameters, both WM tracts are 
already affected in peri-pubertal KO mice and remain so through 
adulthood. Moreover, the axonal conductivity is also reduced 
along these 2 tracts, which could potentially impair proper com-
munication between the brain regions directly connected via 
these fiber tracts, particularly when very precise temporal coher-
ent activity is critical. The FF connects the hippocampus with 
the hypothalamus and other subcortical areas, including the 
septal nuclei, nucleus accumbens, mammillary bodies, and tha-
lamic anterior nucleus. These structures play a role in a range of 
behaviors impaired in schizophrenia, such as memory retrieval, 
emotionality, or motivation (White et al., 2008a). Reduced anisot-
ropy in the FF has been reported in both chronic (Kuroki et al., 
2006; Ellison-Wright and Bullmore, 2009; Fitzsimmons et  al., 
2009; Qiu et  al., 2010) and first-episode patients (Luck et  al., 
2010; Fitzsimmons et  al., 2014; Lee et  al., 2013). This suggests 
that anomalies in the FF appear early in the illness. Likewise, 
Gclm KO mice showed reduced FA in the FF at peri-pubertal 
age and adulthood. In a complementary study, we found that 
early psychosis patients displayed decreased FA along the for-
nix and reduced hippocampal volume, which are associated 
with peripheral markers of redox homeostasis (P. S. Baumann, A. 
Griffa, M. Fournier, C. Ferrari, L. Alameda, M. Cuenod, J.P. Thiran, 
P. Hagmann, K.Q. Do, and P. Conus, unpublished observations). 
Noteworthy, adult Gclm KO mice have also reduced number 
of parvalbumin-immunoreactive interneurons and impaired 
gamma oscillations in the ventral hippocampus (Steullet et al., 
2010). Therefore, the structural and functional alterations in the 
FF may be linked to hippocampal anomalies. MRI studies have 
also unveiled reduced FA in the fornix (Barysheva et  al., 2013) 
and reduced volume of the fimbria (Elvsåshagen et al., 2013) in 
bipolar patients and reduced FA in the fornix in children with 
autism (Poustka et  al., 2012), suggesting common pathological 
mechanisms probably comprising oxidative stress.

The AC is comprised by 2 independent bundles: the anterior 
and posterior limbs. The anterior limb allows inter-hemispheric 
communication between the 2 contra-lateral olfactory systems 

(Kucharski et  al., 1990). The posterior limb interconnects the 
orbitofrontal cortices, the inferior temporal lobes, and the amyg-
dalas (Di Virgilio et al., 1999; Patel et al., 2010), regions known to 
be affected in schizophrenia (White et al., 2008a; Kanahara et al., 
2013). Structural abnormalities have been reported in the AC of 
schizophrenia patients, including decreased WM density (Hulshoff 
Pol et al., 2004), reduced FA (Choi et al., 2011), and reduced fiber 
number (Highley et al., 1999). Reduced FA has also been reported 
in the AC of young bipolar patients (Saxena et al., 2012).

DTI studies in schizophrenia patients have also revealed 
alterations in other cortical and subcortical WM structures 
(Ellison-Wright and Bullmore, 2009; Segal et  al., 2010; Abdul-
Rahman et al., 2011; Lee et al., 2013; Canu et al., 2014; Holleran 
et  al., 2014) that were not significantly altered in the brain of 
Gclm KO mice. While the identified FA reduction in FF and AC are 
the most prominent WM alterations resulting from a whole brain 
analysis in Gclm KO and WT mice, this does not exclude that 
other WM tracts may be slightly affected by deficiency in anti-
oxidant systems. Interestingly, many of the WM tracts that could 
be analyzed in our study also displayed small and nonsignificant 
lower FA and higher RD in Gclm KO compared with WT mice. It 
should be noted that the small size of the mouse brain poses a 
challenge for detecting alterations in small or diffuse WM tracts. 
In particular, despite the high resolution achieved (voxel size was 
0.16 x 0.31 x 0.6 mm3), partial volume effects are prominent in 
cortico-cortical projections. In the CC, most studies in schizo-
phrenia have found alterations in the genu, its most anterior 
part (Ellison-Wright and Bullmore, 2009). In our study, the CC ROI 
comprises all the antero-posterior range of the corpus callosum, 
which may have diluted possible alterations, but this lack of focal 
power in big ROIs is inherent to this exploratory study.

In conclusion, redox dysregulation caused by reduced glu-
tathione synthesis has a negative impact on the structure and 
function of a subset of WM tracts. The alterations in FF and AC 
are present at peri-pubertal age and remain during adulthood 
without further worsening. These data suggest that redox dys-
regulation/oxidative stress could contribute to the impaired WM 
integrity found in schizophrenia and other psychiatric disorders.
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