10 research outputs found

    Latent functional diversity may accelerate microbial community responses to temperature fluctuations

    Get PDF
    How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to ‘switch on’ at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Resource-dependent attenuation of species interactions during bacterial succession

    Get PDF
    Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning

    Higher-diversity soil bacterial communities are more resistant to the effects of nutrient addition

    No full text
    Large scale soil surveys reveal soil bacterial diversity is strongly correlated with a number of soil edaphic variables including pH and nutrient status. What is less clear is whether soil communities that differ in their diversity are differentially able to resist perturbations. Here we present data on bacterial communities sampled from a large-scale, fully factorial grassland field experiment examining the effects of above-ground biotic manipulations (grazing, insecticides, molluscicides) and below-ground nutrient additions on soils manipulated to two differing pH levels. We measured molecular fingerprints of the bacterial communities using tRFLP, and also assayed metabolic activity associated with each of the plots. We found that nutrient additions significantly affected the pH-4 soil communities but had lesser effects on the higher pH-7 soils, indicating that the lower diversity soils were more susceptible (or less resistant) to perturbations arising from nutrient addition. These results call for further manipulative studies to understand feedbacks between microbial diversity and co-varying soil chemical parameters

    Latent functional diversity may accelerate microbial community responses to environmental fluctuations

    No full text
    Whether and how whole ecological communities can respond to climate change remains an open question. With their fast generation times and abundant functional diversity, microbes in particular harbor great potential to exhibit community-level adaptation through a combination of strain-level adaptation, phenotypic plasticity, and species sorting. However, the relative importance of these mechanisms remains unclear. Here, through a novel laboratory experiment, we show that bacterial communities can exhibit a remarkable degree of community-level adaptability through a combination of phenotypic plasticity and species sorting alone. Specifically, by culturing soil communities from a single location at six temperatures between 4°C and 50°C, we find that multiple strains well adapted to different temperatures can be isolated from the community, without immigration or strain-level adaptation. This is made possible by the ability of strains with different physiological and life history traits to “switch on” under suitable conditions, with phylogenetically distinct K-specialist taxa favoured under cooler conditions, and r-specialist taxa in warmer conditions. Our findings provide new insights into microbial community adaptation, and suggest that microbial community function is likely to respond rapidly to climatic fluctuations, through changes in species composition during repeated community assembly dynamics

    Estimating digestion time in gelatinous predators - a methodological comparison with the scyphomedusa Aurelia aurita.

    No full text
    In order to quantify the trophic impact of gelatinous predators, digestion time estimates are commonly applied to counts of prey in the guts. Three primary approaches are used, the Manual-feeding, Natural-feeding and Steady-state methods; these differ in methodology and their underlying assumptions. The criteria used to define the end-point of digestion, and the resolution at which digestion progress is observed, also vary across studies. To understand the impact of such differences, we estimate digestion times of the scyphomedusa Aurelia aurita fed adult females of the copepod Acartia tonsa using these various approaches. We find ~fourfold differences which can be attributed to bias towards the slowest rates of digestion by some end-point criteria, and overestimation from low observation resolution. Artificial manipulation and the degree to which swimming and feeding behaviour are natural may also influence estimates. We provide recommendations for those quantifying digestion times of Aurelia aurita medusae and gelatinous predators

    CELLDEX2018

    No full text
    Data and code associated with the manuscript: SD Tiegs, DM Costello, MW Isken, G Woodward, PB McIntyre, MO Gessner, E Chauvet, NA Griffiths, AS Flecker, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    No full text
    Abstract River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale

    Human activities shape global patterns of decomposition rates in rivers

    No full text
    Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf litter decomposition rates with high accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth and reveals rapid decomposition across continental-scale areas dominated by human activities
    corecore