66 research outputs found

    DEXA Body Composition and Cardiovascular Risk Factors Weakly Related in Police Officers

    Get PDF
    There is currently little research on whether fat mass and distribution is a predictive factor of cardiovascular risk. PURPOSE: To determine if obesity measures, such as fat mass and distribution (android vs gynoid), could be used to predict cardiovascular risk, particularly lipid levels, systolic blood pressure (SBP) and blood glucose. Our hypothesis was that fat mass is not an accurate predictor of these cardiovascular risk factors. METHODS: 182 police officers (166 males, 16 females; age 37.6±8.1 yrs; ht 1.7±0.1 m; wt 92.2±17.8 kg; BMI 28.9±4.8) were part of an annual cardiovascular risk profile testing group. We measured resting heart rate and blood pressure, and body composition via DEXA scan (SBP 127.16±10.33 mmHg; fat mass 26.85±9.99 kg; lean mass 62.01±9.90 kg; percent android fat 35.54±10.07; percent gynoid fat 29.65±6.91). Fasting blood samples were drawn and analyzed by a clinically certified lab to determine total blood cholesterol (TC) (191.79±37.31 mg/dL), LDL (119.23±34.74 mg/dL), HDL (46.39±10.48 mg/dL), triglycerides (128.94±99.25 mg/dL), and glucose (86.67±18.65 mg/dL). Correlations were determined by using a bivariate Pearson correlation matrix, significance was set at and p\u3c0.01**. RESULTS: As fat mass increased, total cholesterol and LDL increased and HDL decreased. Triglycerides, glucose, and SBP also increased as fat mass increased. There were also significant increases in total cholesterol, LDL, triglycerides, glucose and SBP as android fat percentage increased. HDL decreased significantly as android fat percentage increased. CONCLUSION: Fat mass weakly correlates with blood cholesterol levels. We suggest that factors other than fat mass affect cholesterol, such as genetics and lifestyle. More research is needed to see if this correlation holds or is stronger in similar and different populations

    Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains

    Get PDF
    Recently, 125 loci with genome-wide support for association with schizophrenia were identified. We investigated the impact of these variants and their accumulated genetic risk on brain activation in five neurocognitive domains of the Research Domain Criteria (working memory, reward processing, episodic memory, social cognition and emotion processing). In 578 healthy subjects we tested for association (i) of a polygenic risk profile score (RPS) including all single-nucleotide polymorphisms (SNPs) reaching genome-wide significance in the recent genome-wide association studies (GWAS) meta-analysis and (ii) of all independent genome-wide significant loci separately that showed sufficient distribution of all allelic groups in our sample (105 SNPs). The RPS was nominally associated with perigenual anterior cingulate and posterior cingulate/precuneus activation during episodic memory (PFWE(ROI)=0.047) and social cognition (PFWE(ROI)=0.025), respectively. Single SNP analyses revealed that rs9607782, located near EP300, was significantly associated with amygdala recruitment during emotion processing (PFWE(ROI)=1.63 × 10−4, surpassing Bonferroni correction for the number of SNPs). Importantly, this association was replicable in an independent sample (N=150; PFWE(ROI)<0.025). Other SNP effects previously associated with imaging phenotypes were nominally significant, but did not withstand correction for the number of SNPs tested. To assess whether there was true signal within our data, we repeated single SNP analyses with 105 randomly chosen non-schizophrenia-associated variants, observing fewer significant results and lower association probabilities. Applying stringent methodological procedures, we found preliminary evidence for the notion that genetic risk for schizophrenia conferred by rs9607782 may be mediated by amygdala function. We critically evaluate the potential caveats of the methodological approaches employed and offer suggestions for future studies

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling, and Data Assimilation

    Full text link
    In this special issue, we present recent scientific work that analyzes the role of patterns in soil-vegetation-atmosphere (SVA) systems over a wide range of scales ranging from the pore scale up to mesoscale catchments. Specific attention is given to the development of novel data assimilation methods, noninvasive measurement techniques that allow mapping spatial patterns of state variables and fluxes, and two-way coupling of models in a scale-consistent way. "Patterns in Soil-Vegetation-Atmosphere Systems" is also the research topic of a collaborative research center (TR32) between the universities of Aachen, Bonn, and Cologne and the Forschungszentrum Julich. In this center, which is funded by the Deutsche Forschungsgemeinschaft, on the basis of an international evaluation, scientists covering a broad range of earth science disciplines are working together. During June 11-12, 2010 the center organized its first international workshop in Aachen. The contributions presented in this special issue of Vadose Zone Journal include contributions from the collaborative research center and external contributions, both from Germany and worldwide

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    • 

    corecore