557 research outputs found

    Involvement of Src Family Tyrosine Kinase in Apoptosis of Human Neutrophils Induced by Protozoan Parasite Entamoeba histolytica

    Get PDF
    Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica. In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2. Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica

    A role for Syk-kinase in the control of the binding cycle of the β2 integrins (CD11/CD18) in human polymorphonuclear neutrophils

    Get PDF
    A fine control of β2 integrin (CD11/CD18)-mediated firm adhesion of human neutrophils to the endothelial cell monolayer is required to allow ordered emigration. To elucidate the molecular mechanisms that control this process, intracellular protein tyrosine signaling subsequent to β2 integrin-mediated ligand binding was studied by immunoprecipitation and Western blotting techniques. The 72-kDa Syk-kinase, which was tyrosine-phosphorylated upon adhesion, was found to coprecipitate with CD18, the β-subunit of the β2 integrins. Moreover, inhibition of Syk-kinase by piceatannol enhanced adhesion and spreading but diminished N-formyl-Met-Leu-Phe-induced chemotactic migration. The enhancement of adhesiveness was associated with integrin clustering, which results in increased integrin avidity. In contrast, piceatannol had no effect on the surface expression or on the affinity of β2 integrins. Altogether, this suggests that Syk-kinase controls alternation of β2 integrin-mediated ligand binding with integrin detachment

    Spleen tyrosine kinase Syk is critical for sustained leukocyte adhesion during inflammation in vivo

    Get PDF
    Background: During inflammation, beta(2)-integrins mediate leukocyte adhesion to the endothelium accompanied by the activation of the spleen tyrosine kinase Syk. Results: We investigated leukocyte adhesion and rolling in cremaster muscle venules before and during stimulation with fMLP using mice with a Syk(-/-) hematopoietic system. In unstimulated venules, Syk(-/-) leukocytes adhered less efficiently than control leukocytes while rolling was similar between Syk(-/-) and control leukocytes. During fMLP-superfusion, control mice showed significantly increased adhesion accompanied by reduced rolling. For Syk(-/-) leukocytes, an increase in adhesion with a concomitant decrease in rolling was only observed during the first three minutes during fMLP stimulation, but not at later time points. We also investigated leukocyte spreading against the vessel wall during fMLP stimulation and found a significant impairment of spreading for Syk(-/-) leukocytes. Additional in vitro experiments revealed that the adhesion and spreading defect seen in Syk(-/-) chimeric mice was due to compromised beta(2)-integrin-mediated outside-in signaling. Conclusion: We provide substantial evidence for an important role of Syk in mediating beta(2)-integrin dependent outside-in signaling leading to sustained leukocyte adhesion and spreading during the inflammatory response in vivo

    Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    Get PDF
    C-type lectin receptors, their adaptor molecules and S-type lectins (galectins) are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors and galectins is different between mice and humans which must be considered in the interpretation of related studies

    Coordinate interactions of Csk, Src, and Syk kinases with αIIbβ3 initiate integrin signaling to the cytoskeleton

    Get PDF
    Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin αIIbβ3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in αIIbβ3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with αIIbβ3. However, fibrinogen binding caused Csk to dissociate from αIIbβ3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with αIIbβ3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to αIIbβ3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton

    Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells

    Get PDF
    β-glucans exert receptor-mediated immunomodulating activities, including oxidative burst activity and cytokine secretion. The role of the β-glucan receptors dectin-1 and complement receptor 3 (CR3) in the response of immune cells towards β-glucans is still unresolved. Dectin-1 is considered as the main β-glucan receptor in mice, while recent studies in man show that CR3 is more important in β-glucan-mediated responses. This incited us to elucidate which receptor contributes to the response of innate immune cells towards particulate β-glucans in pigs as the latter might serve as a better model for man. Our results show an important role of CR3 in β-glucan recognition, as blocking this receptor strongly reduced the phagocytosis of β-glucans and the β-glucan-induced ROS production by porcine neutrophils. Conversely, dectin-1 does not seem to play a major role in β-glucan recognition in neutrophils. However, recognition of β-glucans appeared cell type-specific as both dectin-1 and CR3 are involved in the β-glucan-mediated responses in pig macrophages. Moreover, CR3 signalling through focal adhesion kinase (FAK) was indispensable for β-glucan-mediated ROS production and cytokine (TNFα, IL-1β, IL-8) production in neutrophils and macrophages, while the Syk-dependent pathway was only partly involved in these responses. We may conclude that as for man, CR3 plays a cardinal role in β-glucan signalling in porcine neutrophils, while macrophages use a more diverse receptor array to detect and respond towards β-glucans. Nonetheless, FAK acts as a master switch that regulates β-glucan-mediated responses in neutrophils as well as macrophages

    Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release

    Get PDF
    Aims: Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. Methods and results: Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. Conclusions: CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and procalcific potential of microcalcification

    The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis

    Get PDF
    Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug targe
    corecore