15 research outputs found

    Climatic and cultural changes in the west Congo Basin forests over the past 5000 years

    Get PDF
    Central Africa includes the world's second largest rainforest block. The ecology of the region remains poorly understood, as does its vegetation and archaeological history. However, over the past 20 years, multidisciplinary scientific programmes have enhanced knowledge of old human presence and palaeoenvironments in the forestry block of Central Africa. This first regional synthesis documents significant cultural changes over the past five millennia and describes how they are linked to climate. It is now well documented that climatic conditions in the African tropics underwent significant changes throughout this period and here we demonstrate that corresponding shifts in human demography have had a strong influence on the forests. The most influential event was the decline of the strong African monsoon in the Late Holocene, resulting in serious disturbance of the forest block around 3500 BP. During the same period, populations from the north settled in the forest zone; they mastered new technologies such as pottery and fabrication of polished stone tools, and seem to have practised agriculture. The opening up of forests from 2500 BP favoured the arrival of metallurgist populations that impacted the forest. During this long period (2500–1400 BP), a remarkable increase of archaeological sites is an indication of a demographic explosion of metallurgist populations. Paradoxically, we have found evidence of pearl millet (Pennisetum glaucum) cultivation in the forest around 2200 BP, implying a more arid context. While Early Iron Age sites (prior to 1400 BP) and recent pre-colonial sites (two to eight centuries BP) are abundant, the period between 1600 and 1000 BP is characterized by a sharp decrease in human settlements, with a population crash between 1300 and 1000 BP over a large part of Central Africa. It is only in the eleventh century that new populations of metallurgists settled into the forest block. In this paper, we analyse the spatial and temporal distribution of 328 archaeological sites that have been reliably radiocarbon dated. The results allow us to piece together changes in the relationships between human populations and the environments in which they lived. On this basis, we discuss interactions between humans, climate and vegetation during the past five millennia and the implications of the absence of people from the landscape over three centuries. We go on to discuss modern vegetation patterns and African forest conservation in the light of these events.Peer reviewe

    Dynamic Performance Improvement Using Model Reference Adaptive Control of Photovoltaic Systems under Fast-Changing Atmospheric Conditions

    No full text
    The effectiveness of a photovoltaic (PV) system can be increased by using maximum power point tracking (MPPT). The literature has suggested a number of methods for tracking the maximum power point (MPP). However, this number of methods most often presents a high convergence speed in reaching the MPP, complexity under their implementation, power fluctuations, overshoots, and great difficulty in reaching the MPP under fast-changing atmospheric conditions, thus influencing the efficiency of PV systems. Intending to improve the performance of PV systems under rapid changes in the atmosphere, this paper proposes model reference adaptive control (MRAC) as a technique for tracking the MPP based on the employ of reference models such as optimal voltage and current at the MPP (VMPP and IMPP). The MATLAB/Simulink environment is used to produce the simulation results; the Kyocera Solar KC 130 GT module is used here as a photovoltaic power plant, connected to a boost converter, supplying a resistive load. The Lyapunov theory was used to demonstrate the stability of the system. The simulation outcomes obtained using the suggested method are compared with those obtained by techniques such as perturb and observe (P&O), incremental conductance (INC), variable step incremental conductance (VSINC), particle swarm optimization (PSO), and grey wolf optimization (GWO), thus showing a very large improvement under standard test and fast-changing atmospheric conditions of the technique proposed on the other techniques in terms of convergence speed and tracking efficiency. The simulation results prove that the suggested method has great tracking effectiveness (>99.88%), less time for convergence (<0.01 s), and simple implementation complexity under fast-changing atmospheric conditions without both transient and steady-state power oscillations, overshoots, and chattering effects, thus causing a great minimization of energy losses, and the proposed technique reaches exactly the MPP under fast-changing atmospheric conditions

    Ancient West African foragers in the context of African population history

    Get PDF
    Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children—two of whom were buried approximately 8,000 years ago and two 3,000 years ago—from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group1,2,3,4,5,6,7,8,9,10,11. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region12,13. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today—as well as speakers of Bantu languages from across the continent—are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans
    corecore