69 research outputs found

    Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot

    Get PDF
    Aims: To identify ascomycetous yeasts recovered from sound and damaged grapes by the presence of honeydew or sour rot. Methods and Results: In sound grapes, the mean yeast counts ranged from 3.20 ± 1.04 log CFU g-1 to 5.87 ± 0.64 log CFU g-1. In honeydew grapes, the mean counts ranged from 3.88 ± 0.80 log CFU g-1 to 6.64 ± 0.77 log CFU g-1. In sour rot grapes counts varied between 6.34 ± 1.03 and 7.68 ± 0.38 log CFU g-1. Hanseniaspora uvarum was the most frequent species from sound samples. In both types of damage, the most frequent species were Candida vanderwaltii, H. uvarum and Zygoascus hellenicus. The latter species was recovered in high frequency because of the utilization of the selective medium DBDM (Dekkera ⁄ Brettanomyces differential medium). The scarce isolation frequency of the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and Zygosaccharomyces bisporus (in honeydew affected grapes) could only be demonstrated by the use of the selective medium ZDM (Zygosaccharomyces differential medium). Conclusions: The isolation of several species only from damaged grapes indicates that damage constituted the main factor determining yeast diversity. The utilization of selective media is required for eliciting the recovery of potentially wine spoilage species. Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimate

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    Targeted next-generation sequencing in Slovak cardiomyopathy patients

    No full text
    OBJECTIVES: For the first time we used targeted next-generation sequencing to detect candidate pathogenic variants in Slovak cardiomyopathy patients. BACKGROUND: Targeted next-generation sequencing is considered to be the best practice in genetic diagnostics of cardiomyopathies. However, in Slovakia, with high cardiomyopathies prevalence of 1/440, the current diagnostic tests are still based on Sanger sequencing of a few genes. Consequently, little is known about the exact contribution of pathogenic variants in known cardiomyopathy genes in Slovak patients. METHODS: We used a panel of 46 known cardiomyopathy-associated genes to detect genetic variants in 16 Slovak cardiomyopathy patients (6 dilated, 8 hypertrophic, 2 non-compaction subtypes). RESULTS: We identified candidate pathogenic variants in 11 of 16 patients (69 %). Genes with higher count of candidate pathogenic variants were MYBPC3, MYH and TTN, each with 3 different variants. Seven variants ACTC1 (c.329C>T), ANKRD1 (c.683G>T), MYH7 (c.1025C>T), PKP2 (c.2003delA), TTN (c.51655C>T, c.84841G>T, c.101874_101881delAGAATTTG) have been detected for the first time and might represent Slovak-specific genetic cause. CONCLUSIONS: We have performed genetic testing of previously untested Slovak cardiomyopathy patients using next-generation sequencing cardiomyopathy gene panel. Given the high percentage of candidate pathogenic variants it should be recommended to implement this method into routine genetic diagnostic practice in Slovakia (Tab. 4, Ref. 39)
    corecore