1,205 research outputs found

    Cluster Dynamical Mean Field Theories

    Full text link
    Cluster Dynamical Mean Field Theories are analyzed in terms of their semiclassical limit and their causality properties, and a translation invariant formulation of the cellular dynamical mean field theory, PCDMFT, is presented. The semiclassical limit of the cluster methods is analyzed by applying them to the Falikov-Kimball model in the limit of infinite Hubbard interaction U where they map to different classical cluster schemes for the Ising model. Furthermore the Cutkosky-t'Hooft-Veltman cutting equations are generalized and derived for non translation invariant systems using the Schwinger-Keldysh formalism. This provides a general setting to discuss causality properties of cluster methods. To illustrate the method, we prove that PCDMFT is causal while the nested cluster schemes (NCS) in general and the pair scheme in particular are not. Constraints on further extension of these schemes are discussed.Comment: 26 page

    Maximising the impact of qualitative research in feasibility studies for randomised controlled trials: guidance for researchers

    Get PDF
    Feasibility studies are increasingly undertaken in preparation for randomised controlled trials in order to explore uncertainties and enable trialists to optimise the intervention or the conduct of the trial. Qualitative research can be used to examine and address key uncertainties prior to a full trial. We present guidance that researchers, research funders and reviewers may wish to consider when assessing or undertaking qualitative research within feasibility studies for randomised controlled trials. The guidance consists of 16 items within five domains: research questions, data collection, analysis, teamwork and reporting. Appropriate and well conducted qualitative research can make an important contribution to feasibility studies for randomised controlled trials. This guidance may help researchers to consider the full range of contributions that qualitative research can make in relation to their particular trial. The guidance may also help researchers and others to reflect on the utility of such qualitative research in practice, so that trial teams can decide when and how best to use these approaches in future studies

    Gaming motivation and problematic video gaming: The role of needs frustration

    Get PDF
    Motivation is often used as a predictor of a problematic style of video game engagement, implying that individuals' gaming undermines optimal functioning. Drawing from recent advances in Self-Determination Theory (SDT), the present study explores the links between gaming motivations, the daily frustration of basic psychological needs, and reports of problematic video gaming (PVG). A sample of 1029 participants (72.8% male; M = 22.96 years; SD = 4.13 years) completed items regarding their gaming engagement and gaming motivation as well as their experience of needs frustration and PVG symptoms. Results revealed positive associations between gaming motivations and PVG, and between daily needs frustration and PVG. Finally, after comparing several competing models, a mediational model whereby needs frustration explained the association between individuals' gaming motivation and PVG emerged as best fitting the data. The discussion addresses the theoretical and practical implications of these findings in the context of recent research

    Consistent Anisotropic Repulsions for Simple Molecules

    Full text link
    We extract atom-atom potentials from the effective spherical potentials that suc cessfully model Hugoniot experiments on molecular fluids, e.g., O2O_2 and N2N_2. In the case of O2O_2 the resulting potentials compare very well with the atom-atom potentials used in studies of solid-state propertie s, while for N2N_2 they are considerably softer at short distances. Ground state (T=0K) and room temperatu re calculations performed with the new NNN-N potential resolve the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
    corecore