6 research outputs found
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Efficient Metadata Management in Large Distributed Storage Systems
Efficient metadata management is a critical aspect of overall system performance in large distributed storage systems. Directory subtree partitioning and pure hashing are two common techniques used for managing metadata in such systems, but both suffer from bottlenecks at very high concurrent access rates. We present a new approach called Lazy Hybrid (LH) metadata management that combines the best aspects of these two approaches while avoiding their shortcomings
Reliability Mechanisms for Very Large Storage Systems
Reliability and availability are increasingly important in large-scale storage systems built from thousands of individual storage devices. Large systems must survive the failure of individual components; in systems with thousands of disks, even infrequent failures are likely in some device. We focus on two types of errors: nonrecoverable read errors and drive failures. We discuss mechanisms for detecting and recovering from such errors, introducing improved techniques for detecting errors in disk reads and fast recovery from disk failure. We show that simple RAID cannot guarantee sufficient reliability; our analysis examines the tradeoffs among other schemes between system availability and storage efficiency. Based on our data, we believe that two-way mirroring should be sufficient for most large storage systems. For those that need very high reliability, we recommend either three-way mirroring or mirroring combined with RAID
Impact of Failure on Interconnection Networks for Large Storage Systems
Recent advances in large-capacity, low-cost storage devices have led to active research in design of large-scale storage systems built from commodity devices for supercomputing applications. Such storage systems, composed of thousands of storage devices, are required to provide high system bandwidth and petabyte-scale data storage. A robust network interconnection is essential to achieve high bandwidth, low latency, and reliabile delivery during data transfers. However, failures, such as temporary link outages and node crashes, are inevitable. We discuss the impact of potential failures on network interconnections in very large-scale storage systems and analyze the trade-offs among several storage network topologies by simulations. Our results suggest that a good interconnect topology be essential to fault-tolerance of a petabyte-scale storage system