28 research outputs found

    Unveiling Candida albicans intestinal carriage in healthy volunteers : the role of micro- and mycobiota, diet, host genetics and immune response

    Get PDF
    Acknowledgements This work was supported by a grant from Agence Nationale de la Recherche (FunComPath ANR-14-IFEC-0004), the French Government’s Investissement d’Avenir program (Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases [ANR10-LABX-62-IBEID], and [ANR-10-LABX-69-01]), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie action, Innovative Training Network (FunHoMic; Grant No. 812969 ), and the European Union's Horizon 2020 Research and Innovation Program (HDM-FUN, Grant No. 847507). AWW and the Rowett Institute (University of Aberdeen) received core funding support from the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS).Peer reviewedPublisher PD

    A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals.

    Get PDF
    BACKGROUND: The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu IntĂ©rieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20-69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. RESULTS: Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. CONCLUSION: In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01699893

    Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines.

    Get PDF
    Humoral immune responses to infectious agents or vaccination vary substantially among individuals, and many of the factors responsible for this variability remain to be defined. Current evidence suggests that human genetic variation influences (i) serum immunoglobulin levels, (ii) seroconversion rates, and (iii) intensity of antigen-specific immune responses. Here, we evaluated the impact of intrinsic (age and sex), environmental, and genetic factors on the variability of humoral response to common pathogens and vaccines. We characterized the serological response to 15 antigens from common human pathogens or vaccines, in an age- and sex-stratified cohort of 1000 healthy individuals (Milieu IntĂ©rieur cohort). Using clinical-grade serological assays, we measured total IgA, IgE, IgG, and IgM levels, as well as qualitative (serostatus) and quantitative IgG responses to cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 and 2, varicella zoster virus, Helicobacter pylori, Toxoplasma gondii, influenza A virus, measles, mumps, rubella, and hepatitis B virus. Following genome-wide genotyping of single nucleotide polymorphisms and imputation, we examined associations between ~ 5 million genetic variants and antibody responses using single marker and gene burden tests. We identified age and sex as important determinants of humoral immunity, with older individuals and women having higher rates of seropositivity for most antigens. Genome-wide association studies revealed significant associations between variants in the human leukocyte antigen (HLA) class II region on chromosome 6 and anti-EBV and anti-rubella IgG levels. We used HLA imputation to fine map these associations to amino acid variants in the peptide-binding groove of HLA-DRÎČ1 and HLA-DPÎČ1, respectively. We also observed significant associations for total IgA levels with two loci on chromosome 2 and with specific KIR-HLA combinations. Using extensive serological testing and genome-wide association analyses in a well-characterized cohort of healthy individuals, we demonstrated that age, sex, and specific human genetic variants contribute to inter-individual variability in humoral immunity. By highlighting genes and pathways implicated in the normal antibody response to frequently encountered antigens, these findings provide a basis to better understand disease pathogenesis. ClinicalTrials.gov , NCT01699893

    Deconvolution of the Response to Bacillus Calmette–GuĂ©rin Reveals NF-ÎșB-Induced Cytokines As Autocrine Mediators of Innate Immunity

    Get PDF
    Bacillus Calmette–GuĂ©rin (BCG) is used as a vaccine and diagnostic test for tuberculosis, as well as immunotherapy in the treatment of bladder cancer. While clinically useful, the response to mycobacterial stimulation is complex and the induced protein signature remains poorly defined. We characterized the cell types directly engaged by BCG, as well as the induced cytokine loops that transmit signal(s) to bystander cells. Standardized whole-blood stimulations and mechanistic studies on single and purified cell populations identified distinct patterns of activation in monocytes as compared to neutrophils and invariant lymphocyte populations. Deconvoluting the role of Toll-like receptor 2/4 and Dectin-1/2 in the inflammatory response to BCG, we revealed Dectin-1/2 as dominant in neutrophils as compared to monocytes, which equally engaged both pathways. Furthermore, we quantified the role of NF-ÎșB and NADPH/reactive oxygen species (ROS)-dependent cytokines, which triggered a JAK1/2-dependent amplification loop and accounted for 40–50% of the induced response to BCG. In sum, this study provides new insight into the molecular and cellular pathways involved in the response to BCG, establishing the basis for a new generation of immunodiagnostic tools

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ÎČ are found in ∌20% of deceased patients across age groups, and in ∌1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≄70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≄80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidaritĂ© pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), REACTing-INSERM; and the University Paris CitĂ©. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche MĂ©dicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs SalariĂ©s, Direction gĂ©nĂ©rale de la SantĂ©, Mutuelle GĂ©nĂ©rale de l’Education Nationale, Institut de la LongĂ©vitĂ©, Conseils RĂ©gionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de donnĂ©es biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), FundaciĂłn DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas cientĂ­ficas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la CoopĂ©ration Scientifique (ECOS) Nord - CoopĂ©ration Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the SĂŁo Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes

    No full text
    Posté sur medRxiv le 29/03/2021Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system and the acute-phase response. Recent large-scale studies have reported genetic ( i . e . quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood cell composition to plasma protein heterogeneity has not been fully characterized and may act as a confounding factor in association studies. Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 and 60-69 years), from the Milieu Intérieur cohort. We quantified 297 proteins by Luminex in a clinically certified laboratory and their levels of variation were analysed together with 5.2M single-nucleotide polymorphisms. With respect to non-genetic variables, we included more than 700 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans , respectively, collectively associated with 87 plasma proteins and including 30 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood cell fractions, including leukocytes, lymphocytes and three types of polymorphonuclear cells, had a larger contribution to inter-individual variability than age and sex, and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of eight monogenic Mendelian disease genes including three primary immunodeficiency genes (Ficolin-3, Interleukine-2 Receptor alpha and FAS). Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management

    Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes

    No full text
    International audienceBackground: Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system, and the acute-phase response. Recent large-scale studies have reported genetic (i.e., protein quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood-cell composition to plasma protein heterogeneity has not been fully characterized and may act as a mediating factor in association studies. Methods: Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20–29 and 60–69 years), from the Milieu IntĂ©rieur cohort. We quantified 229 proteins by Luminex in a clinically certified laboratory and their levels of variation were analyzed together with 5.2 million single-nucleotide polymorphisms. With respect to non-genetic variables, we included 254 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. Results: Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and including 19 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood cell fractions, including leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and platelets, had a larger contribution to inter-individual variability than age and sex and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of five monogenic Mendelian disease genes including two primary immunodeficiency genes (Ficolin-3 and FAS). Conclusions: Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management

    Gut microbiome stability and dynamics in healthy donors and patients with non-gastrointestinal cancers

    No full text
    International audienceAs microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response
    corecore