62 research outputs found

    Fourfold higher tundra volatile emissions due to arctic summer warming

    Get PDF
    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition - each treatment alone and in combination - in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change

    The Effect of Protease-Activated Receptor-1 (PAR-1) Inhibition on Endothelial-Related Biomarkers in Patients with Coronary Artery Disease

    Get PDF
    Abstract Background: Vorapaxar has been shown to reduce cardiovascular mortality in postmyocardial infarction (MI) patients. Pharmacodynamic biomarker research related to protease-activated receptor-1 (PAR-1) inhibition with vorapaxar in humans has short follow-up (FU) duration and is mainly focused on platelets rather than endothelial cells. Aim: This article assesses systemic changes in endothelial-related biomarkers during vorapaxar treatment compared with placebo at 30 days’ FU and beyond, in patients with coronary heart disease. Methods: Local substudy patients in Norway were included consecutively from two randomized controlled trials; post-MI subjects from TRA2P-TIMI 50 and non-ST-segment elevation MI (NSTEMI) patients from TRACER. Aliquots of citrated blood were stored at–80°C. Angiopoietin-2, angiopoietin-like 4, vascular endothelial growth factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, von Willebrand factor, thrombomodulin, and plasminogen activator inhibitor-1 and -2 were measured at 1-month FU and at study completion (median 2.3 years for pooled patients). Results: A total of 265 consecutive patients (age median 62.0, males 83%) were included. Biomarkers were available at both FUs in 221 subjects. In the total population, angiopoietin-2 increased in patients on vorapaxar as compared with placebo at 1-month FU (p ¼ 0.034). Angiopoietin-like 4 increased (p ¼ 0.028) and plasminogen activator inhibitor-2 decreased (p ¼ 0.025) in favor of vorapaxar at final FU. In postMI subjects, a short-term increase in E-selectin favoring vorapaxar was observed, p ¼ 0.029. Also, a short-term increase in von Willebrand factor (p ¼ 0.032) favoring vorapaxar was noted in NSTEMI patients. Conclusion: Significant endothelial biomarker changes during PAR-1 inhibition were observed in post-MI and NSTEMI patients

    The Effect of Protease-Activated Receptor-1 (PAR-1) Inhibition on Endothelial-Related Biomarkers in Patients with Coronary Artery Disease

    Get PDF
    Background: Vorapaxar has been shown to reduce cardiovascular mortality in postmyocardial infarction (MI) patients. Pharmacodynamic biomarker research related to protease-activated receptor-1 (PAR-1) inhibition with vorapaxar in humans has short follow-up (FU) duration and is mainly focused on platelets rather than endothelial cells. Aim: This article assesses systemic changes in endothelial-related biomarkers during vorapaxar treatment compared with placebo at 30 days’ FU and beyond, in patients with coronary heart disease. Methods: Local substudy patients in Norway were included consecutively from two randomized controlled trials; post-MI subjects from TRA2P-TIMI 50 and non-ST-segment elevation MI (NSTEMI) patients from TRACER. Aliquots of citrated blood were stored at–80°C. Angiopoietin-2, angiopoietin-like 4, vascular endothelial growth factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, von Willebrand factor, thrombomodulin, and plasminogen activator inhibitor-1 and -2 were measured at 1-month FU and at study completion (median 2.3 years for pooled patients). Results: A total of 265 consecutive patients (age median 62.0, males 83%) were included. Biomarkers were available at both FUs in 221 subjects. In the total population, angiopoietin-2 increased in patients on vorapaxar as compared with placebo at 1-month FU (p ¼ 0.034). Angiopoietin-like 4 increased (p ¼ 0.028) and plasminogen activator inhibitor-2 decreased (p ¼ 0.025) in favor of vorapaxar at final FU. In postMI subjects, a short-term increase in E-selectin favoring vorapaxar was observed, p ¼ 0.029. Also, a short-term increase in von Willebrand factor (p ¼ 0.032) favoring vorapaxar was noted in NSTEMI patients. Conclusion: Significant endothelial biomarker changes during PAR-1 inhibition were observed in post-MI and NSTEMI patients.publishedVersio

    Toll-Like Receptor 2 Signaling Protects Mice from Tumor Development in a Mouse Model of Colitis-Induced Cancer

    Get PDF
    Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2−/− mice. Colons harvested from WT and TLR2−/− mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2−/− mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2−/− colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC

    Constitutive TL1A (TNFSF15) Expression on Lymphoid or Myeloid Cells Leads to Mild Intestinal Inflammation and Fibrosis

    Get PDF
    TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohn's disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis

    Convergence of soil nitrogen isotopes across global climate gradients

    Get PDF
    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore