569 research outputs found
Spin states of asteroids in the Eos collisional family
Eos family was created during a catastrophic impact about 1.3 Gyr ago.
Rotation states of individual family members contain information about the
history of the whole population. We aim to increase the number of asteroid
shape models and rotation states within the Eos collision family, as well as to
revise previously published shape models from the literature. Such results can
be used to constrain theoretical collisional and evolution models of the
family, or to estimate other physical parameters by a thermophysical modeling
of the thermal infrared data. We use all available disk-integrated optical data
(i.e., classical dense-in-time photometry obtained from public databases and
through a large collaboration network as well as sparse-in-time individual
measurements from a few sky surveys) as input for the convex inversion method,
and derive 3D shape models of asteroids together with their rotation periods
and orientations of rotation axes. We present updated shape models for 15
asteroids and new shape model determinations for 16 asteroids. Together with
the already published models from the publicly available DAMIT database, we
compiled a sample of 56 Eos family members with known shape models that we used
in our analysis of physical properties within the family. Rotation states of
asteroids smaller than ~20 km are heavily influenced by the YORP effect, whilst
the large objects more or less retained their rotation state properties since
the family creation. Moreover, we also present a shape model and bulk density
of asteroid (423) Diotima, an interloper in the Eos family, based on the
disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the
W.M. Keck II telescope.Comment: Accepted for publication in ICARUS Special Issue - Asteroids: Origin,
Evolution & Characterizatio
Investigation on the role of red fox in tuberculosis maintenance community ¿ second opus: experimental infection with a virulent field Mycobacterium bovis strain
Trabajo presentado al: 69th Wildlife Disease Association and 14th European Wildlife Disease Association Conference. Cuenca, Spain. p. 135. 31 agosto-2 septiembre
SOPHIE velocimetry of Kepler transit candidates XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet
In this paper we report a new transiting warm giant planet: KOI-1257 b. It
was first detected in photometry as a planet-candidate by the
space telescope and then validated thanks to a radial velocity follow-up with
the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d
3 s and a high eccentricity of 0.772 0.045. The planet transits the
main star of a metal-rich, relatively old binary system with stars of mass of
0.99 0.05 Msun and 0.70 0.07 Msun for the primary and secondary,
respectively. This binary system is constrained thanks to a self-consistent
modelling of the transit light curve, the SOPHIE radial
velocities, line bisector and full-width half maximum (FWHM) variations, and
the spectral energy distribution. However, future observations are needed to
confirm it. The PASTIS fully-Bayesian software was used to validate the nature
of the planet and to determine which star of the binary system is the transit
host. By accounting for the dilution from the binary both in photometry and in
radial velocity, we find that the planet has a mass of 1.45 0.35 Mjup,
and a radius of 0.94 0.12 Rjup, and thus a bulk density of 2.1
1.2 g.cm. The planet has an equilibrium temperature of 511 50 K,
making it one of the few known members of the warm-jupiter population. The
HARPS-N spectrograph was also used to observe a transit of KOI-1257 b,
simultaneously with a joint amateur and professional photometric follow-up,
with the aim of constraining the orbital obliquity of the planet. However, the
Rossiter-McLaughlin effect was not clearly detected, resulting in poor
constraints on the orbital obliquity of the planet.Comment: 39 pages, 17 figures, accepted for publication in Astronomy &
Astrophysic
Therapeutic drug monitoring of oral targeted antineoplastic drugs
Purpose
This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed.
Methods
A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted.
Results
OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy.
Conclusion
Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window
Nonlinear Mixed-Effects Model of Z-Endoxifen Concentrations in Tamoxifen-Treated Patients from the CEPAM Cohort
Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer
High-throughput screening of tick-borne pathogens in Europe
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases
Technical developments for computed tomography on the CENBG nanobeam line
The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications.
The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion
The field high-amplitude SX Phe variable BL Cam: results from a multisite photometric campaign. II. Evidence of a binary - possibly triple - system
Short-period high-amplitude pulsating stars of Population I ( Sct
stars) and II (SX Phe variables) exist in the lower part of the classical
(Cepheid) instability strip. Most of them have very simple pulsational
behaviours, only one or two radial modes being excited. Nevertheless, BL Cam is
a unique object among them, being an extreme metal-deficient field
high-amplitude SX Phe variable with a large number of frequencies. Based on a
frequency analysis, a pulsational interpretation was previously given. aims
heading (mandatory) We attempt to interpret the long-term behaviour of the
residuals that were not taken into account in the previous Observed-Calculated
(O-C) short-term analyses. methods heading (mandatory) An investigation of the
O-C times has been carried out, using a data set based on the previous
published times of light maxima, largely enriched by those obtained during an
intensive multisite photometric campaign of BL Cam lasting several months.
results heading (mandatory) In addition to a positive (161 3) x 10
yr secular relative increase in the main pulsation period of BL Cam, we
detected in the O-C data short- (144.2 d) and long-term ( 3400 d)
variations, both incompatible with a scenario of stellar evolution. conclusions
heading (mandatory) Interpreted as a light travel-time effect, the short-term
O-C variation is indicative of a massive stellar component (0.46 to 1
M_{\sun}) with a short period orbit (144.2 d), within a distance of 0.7 AU
from the primary. More observations are needed to confirm the long-term O-C
variations: if they were also to be caused by a light travel-time effect, they
could be interpreted in terms of a third component, in this case probably a
brown dwarf star ( 0.03 \ M_{\sun}), orbiting in 3400 d at a
distance of 4.5 AU from the primary.Comment: 7 pages, 5 figures, accepted for publication in A&
Characterization of Color Production in Xalla´s Palace Complex, Teotihuacan
A multi-analytical approach was used to characterize color remains from Xalla, a Teotihuacan palace complex (project Teotihuacan, Elite and Government. Excavations in Xalla led by Linda R. Manzanilla). Color samples were obtained from polished lithic instruments and pigment ores. Those samples were analyzed combining microscopic and spectroscopic techniques. Our results coincide with previous studies in Teotihuacan, with the chromatic palette displaying a predominance of iron oxides such as hematite, yellow ochre and natural earths, as well as malachite, celadonite and glauconite. We have enlarged the corpus of raw materials with the characterization of jarosite and bone white and mica as aggregate. The identification of raw materials crossed with functional analysis of polished lithic artefacts suggests a production and application process for the pigmenting materials that were divided in four phases, from the crushing of the raw material to the application and finishing of the painted surfaces
Swallowing dysfunction in cancer patients
Purpose Dysphagia (swallowing dysfunction) is a debilitating, depressing, and potentially life-threatening complication in cancer patients that is likely underreported. The present paper is aimed to review relevant dysphagia literature between 1990 and 2010 with a focus on assessment tools, prevalence, complications, and impact on quality of life in patients with a variety of different cancers, particularly in those treated with curative chemoradiation for head and neck cancer. Methods The literature search was limited to the English language and included both MEDLINE/PubMed and EMBASE. The search focused on papers reporting dysphagia as a side effect of cancer and cancer therapy. We identified relevant literature through the primary literature search and by articles identified in references. Results A wide range of assessment tools for dysphagia was identified. Dysphagia is related to a number of factors such as direct impact of the tumor, cancer resection, chemotherapy, and radiotherapy and to newer therapies such as epidermal growth factor receptor inhibitors. Concomitant oral complications such as xerostomia may exacerbate subjective dysphagia. Most literature focuses on head and neck cancer, but dysphagia is also common in other types of cancer. Conclusions Swallowing impairment is a clinically relevant acute and long-term complication in patients with a wide variety of cancers. More prospective studies on the course of dysphagia and impact on quality of life from baseline to long-term follow-up after various treatment modalities, including targeted therapies, are needed
- …