80 research outputs found

    Loss of Muscle MTCH2 Increases Whole-Body Energy Utilization and Protects from Diet-Induced Obesity

    Get PDF
    SummaryMitochondrial carrier homolog 2 (MTCH2) is a repressor of mitochondrial oxidative phosphorylation (OXPHOS), and its locus is associated with increased BMI in humans. Here, we demonstrate that mice deficient in muscle MTCH2 are protected from diet-induced obesity and hyperinsulinemia and that they demonstrate increased energy expenditure. Deletion of muscle MTCH2 also increases mitochondrial OXPHOS and mass, triggers conversion from glycolytic to oxidative fibers, increases capacity for endurance exercise, and increases heart function. Moreover, metabolic profiling of mice deficient in muscle MTCH2 reveals a preference for carbohydrate utilization and an increase in mitochondria and glycolytic flux in muscles. Thus, MTCH2 is a critical player in muscle biology, modulating metabolism and mitochondria mass as well as impacting whole-body energy homeostasis

    Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior

    Get PDF
    It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on “Alcoholism and Stress” in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF

    Handedness as a marker of cerebral lateralization in children with and without autism

    Get PDF
    We employed a multiple case studies approach to investigate lateralization of hand actions in typically and atypically developing children between 4 and 5 years of age. We report on a detailed set of over 1200 hand actions made by four typically developing boys and four boys with autism. Participants were assessed for unimanual hand actions to both objects and the self (self-directed behaviors). Individual and group analyses suggest that typically developing children have a right hand dominance for hand actions to objects and a left hand dominance for hand actions for self-directed behaviors, revealing a possible dissociation for functional specialization of the left and right hemispheres respectively. Children with autism demonstrated mixed-handedness for both target conditions, consistent with the hypothesis that there is reduced cerebral specialization in these children. The findings are consistent with the view that observed lateralized motor action can serve as an indirect behavioral marker for evidence of cerebral lateralization

    Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    Get PDF
    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy

    Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity

    Get PDF
    Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals

    Neuroanatomical Variability of Religiosity

    Get PDF
    We hypothesized that religiosity, a set of traits variably expressed in the population, is modulated by neuroanatomical variability. We tested this idea by determining whether aspects of religiosity were predicted by variability in regional cortical volume. We performed structural magnetic resonance imaging of the brain in 40 healthy adult participants who reported different degrees and patterns of religiosity on a survey. We identified four Principal Components of religiosity by Factor Analysis of the survey items and associated them with regional cortical volumes measured by voxel-based morphometry. Experiencing an intimate relationship with God and engaging in religious behavior was associated with increased volume of R middle temporal cortex, BA 21. Experiencing fear of God was associated with decreased volume of L precuneus and L orbitofrontal cortex BA 11. A cluster of traits related with pragmatism and doubting God's existence was associated with increased volume of the R precuneus. Variability in religiosity of upbringing was not associated with variability in cortical volume of any region. Therefore, key aspects of religiosity are associated with cortical volume differences. This conclusion complements our prior functional neuroimaging findings in elucidating the proximate causes of religion in the brain

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    Silc1 long noncoding RNA is an immediate-early gene promoting efficient memory formation

    No full text
    Summary: Long noncoding RNAs (lncRNAs) are expressed in many brain circuits and types of neurons; nevertheless, their functional significance for normal brain functions remains elusive. Here, we study the functions in the central nervous system of Silc1, an lncRNA we have shown previously to be important for neuronal regeneration in the peripheral nervous system. We found that Silc1 is rapidly and strongly induced in the hippocampus upon exposure to novelty and is required for efficient spatial learning. Silc1 production is important for induction of Sox11 (its cis-regulated target gene) throughout the CA1–CA3 regions and proper expression of key Sox11 target genes. Consistent with its role in neuronal plasticity, Silc1 levels decline during aging and in models of Alzheimer’s disease. Overall, we describe a plasticity pathway in which Silc1 acts as an immediate-early gene to activate Sox11 and induce a neuronal growth-associated transcriptional program important for learning
    corecore