
Eisen et al, Mirror Neurons in ALS 1 
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Abbreviations: 

 

ALS: Amyotrophic lateral sclerosis; ADM: adductor digiti minimi; APB: abductor pollicic brevis; bvFTD: 

Behavioral variant of frontotemporal dementia; FTD: Frontotemporal dementia; fMRI: functional MRI; 

MNS: Mirror neuron system; M1: Primary motor cortex; PTNs: Pyramidal tract neurons; vMPFC: Ventral 

medial prefrontal cortex. 
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Abstract 

There is growing evidence that mirror neurons, initially discovered over two decades ago in the 

monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only 

when it is performing an action, such as grasping an object, but also when observing  a similar action 

performed by another agent (human or monkey). In this review we discuss the origin, cortical 

distribution and possible functions of mirror neurons as a background to exploring their potential 

relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related 

condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes 

having their origins in key evolutionary adaptations. The mirror neuron system is considered by many 

to be the basis of primates' social cognition, with a clear evolutionary advantage. Impaired empathy 

and motor control has been related to a defective mirror neuron system. In ALS, the mirror neuron 

system might be implicated in empathy, the split-hand syndrome, gait, speech, and related language-

gesture impairments. 
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Introduction 

The human motor system has been critically refined through evolution and is profoundly 

interconnected to the many other brain networks. Motor system degeneration, involving loss of limb 

function, gait, speech and vocalization are the clinical hallmarks of the adult neurodegenerative 

disorder amyotrophic lateral sclerosis (ALS), and can be understood, to an extent, by this evolutionary 

development (Eisen et al. , 2014b). Although, typically confined to a body region at disease onset, there 

may be a rapid coalescence of regional involvement involving upper and lower motor neuron loss, 

resulting in a characteristic clinical syndrome, termed ALS (Hardiman et al. , 2011, Kiernan et al. , 

2011).  Respiratory failure is the terminal event in about 85% of patients with ALS, a characteristic 

feature of ALS that is absent in most other Neurodegenerationsneurodegenerations.   ALS also affects 

extramotor systems, involving clinical, pathological and genetic overlap with frontotemporal dementia 

(FTD), most commonly through expansions of the hexanucleotide repeat in C9orf72  (DeJesus-

Hernandez et al. , 2011, Renton et al. , 2011). Members of the same family may develop relatively 

‘pure’ FTD, ALS or both, thus broadening the clinical syndrome of ALS (Snowden et al. , 2013).  

The incidence of frank dementia in sporadic ALS is approximately 15%, but a much higher proportion 

of patients show sub-clinical evidence of executive dysfunction (Lillo et al. , 2011). Executive functions, 

free verbal recall and naming are the most affected cognitive deficits in ALS-FTD variants (Strong, 

2008, Rascovsky et al. , 2011, Snowden et al. , 2013).  However, it is also appreciated that effective 

social interactions in everyday life (social cognition), and its consequences (social cognitive deficits) 

are increasingly apparent in neurodegenerative disorders, including ALS (Elamin et al. , 2012).  

 

While most clinical research in ALS has understandably focused on motor pathways, attention is now 

being directed to all facets of the motor pathways (reflecting ALS as a motor system disorder). Of 

relevance, mirror neurons and the mirror neuron system (MNS), are special in being active both 
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during motor action and during observation of another individual’s motor action, so that the same 

neuron has motor and sensory representations (Rizzolatti and Craighero, 2004; Keysers and Gazzola, 

2006). When observing an action two distinct types of information are obtained - what action is being 

done and, more complex - what for or why? The ‘matching hypothesis’ suggests that whenever 

individuals observe an action being done by someone else, mirror neurons that code for that action 

are activated in the observer.  Since the observers are aware of the outcome of their own motor acts, 

they also recognize what the other individual is doing without the need for further cognitive 

processing (Rizzolatti et al. , 2009).  

 

While mirror neurons were discovered over 20 years ago, questions remain regarding their 

developmental origins and function. Much has been written about a possible role in neurological 

disorders, but our current knowledge of mirror neurons and the input and output systems to which 

they belong is still rudimentary, so that it is difficult to predict with any certainty the likely 

consequences of mirror neuron dysfunction.  Nevertheless, given that mirror neurons could be of 

fundamental importance in social cognition, as well as functioning in the processes of motor control 

and motor learning (Rizzolatti, 2008), it seems worthwhile considering the possible role of mirror 

neurons in the pathophysiology of ALS.  Here we discuss some basic aspects of the MNS and explore 

how, when disordered, mirror neurons may have relevance in early symptomatology of ALS. In 

particular we make the case for possible links between mirror neuron function and empathy, hand 

function, gait and articulation, all of which are significantly impaired in ALS.  

 

Mirror Neuron Development and Function 

From an evolutionary point of view, it seems reasonable that there may be some innate mechanisms in 

place that would be facilitated through sensorimotor learning (Del Giudice et al. , 2009). Indeed the 
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MNS might inform the Sapient Paradox (Renfrew, 2008), broadly encapsulated as the ‘hardware’ for 

the human neocortex preceding any evidence for higher cognitive outputs by tens of thousands of 

years. The settling of humans into communities may have been a key factor, in effect the brain being 

only as productive as those it is shared with, a process in which mirror neurons would be expected to 

play a crucial role.  

 

While there is no firm evidence for the existence of a mirror neurons at birth, there is general 

agreement that infants at birth are attracted to specific sets of stimuli, including faces, their own 

hands, and especially their own hands in motion (Casile et al. , 2011, Ferrari et al. , 2013). This may 

provide sensorimotor experiences that are the necessary scaffolding for mirror neuron development. 

Empathy, in which mirror neurons have also been implicated  (see below), is observable even during 

the first day of life (Singer, 2006), and infant data using eye-tracking measures suggest that the MNS 

develops before 12 months of age (Corradini et al. , 2013). In further support, EEG-mu rhythm 

desynchronization has been widely used as an indicator of a functioning MNS. However, this is of 

course an indirect measure, and cannot prove the existence of populations of mirror neurons that are 

activated during both action execution and observation, as opposed to separate populations of 

‘sensory’ and ‘motor’-related neurons (Braadbaart et al. , 2013). That said, it is of interest that this 

type of desynchronization has also been shown in infants during action observation (Virji-Babul et al. , 

2012). 

 

The roles proposed for a MNS include understanding the meaning of behaviors; helping to learn motor 

tasks or to choose our own actions (Bonini et al. , 2011, Caggiano et al. , 2012); and  predicting the 

actions we are observing, without assigning a goal to them (Bonini et al. , 2011, Marshall, 2014). It has 

been suggested that frontoparietal areas provide the basis for bridging the gap between the physical 
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self and others through motor-simulation mechanisms and cortical midline structures engage in 

processing information about the self and others in more abstract, evaluative terms (Uddin et al. , 

2007). However, there may exist many classes of mirror neurons, influenced by different aspects of an 

observed action (e.g., type of the observed motor act, distance of the observer from the observed 

action, point of view from which the action is observed)(Casile et al. , 2011). 

 

 Cerebral Localisation  

In non-human primates, activity of mirror neurons have been found in different regions of the motor 

system (Lemon, 2010), and mirror neurons have been identified in the ventral premotor cortex (see 

review by Kilner and Lemon, 2013), primary motor cortex (Vigneswaran et al. , 2013), inferior parietal 

lobule (Casile, 2013), and ventral and lateral intraparietal areas. In contrast the existence of a MNS in 

humans, has been surmised almost entirely by functional MRI (fMRI) and Mu rhythm in the EEG a 

measure of a resting motor state, which is normally suppressed by input from an action observation or 

movement execution. This characteristic has caused Mu suppression to be used as proxy marker for 

mirror neuron activation (Braadbaart et al. , 2013). However, mu suppression involves a range of 

structures that modulate motor preparation and are sensitive to visual input, including but not 

restricted to the human analogue of the mirror neuron system (Braadbaart et al. , 2013). 

Many fMRI studies have shown a broad overlap between frontal cortical areas activated for both 

action execution and observation, although, just as with the mu-desynchronization, this is not 

evidence for the existence of mirror neurons in the human brain (see Cerri et al. 2014).  Areas of 

overlap do include the ventral premotor cortex, although comparison of fMRI studies in humans 

versus macaques have demonstrated that fMRI activation of the specific subdivision of PMv that is 

known to contain mirror neurons (F5c) requires that the actor is in full view , and not just the actor’s 

hand (Nelissen et al., 2005; 2011).  
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ALS Hand Function and Mirror Neurons 

Awkwardness in tasks requiring fine finger movements (e.g., difficulties with buttons), stiffness of the 

fingers, and weakness or wasting of the hand muscles may be early symptoms in ALS, though not 

specific to this disorder. Pincer and precision grip are particularly vulnerable in ALS however, which is 

uniquely manifested as a split hand syndrome, where there is preferential involvement of the lateral, 

thenar-innervated muscles (abductor pollicis brevis and first dorsal interosseous) as compared to the 

hypothenar-innervated muscles (abductor digiti minimi) (Eisen et al. , 2012, Menon et al. , 2013). 

Evidence using transcranial magnetic stimulation suggests that the split hand of ALS is cortical in 

origin, and in particular due to failure of the thenar hand corticomotneurons arising in M1 cortex 

(Weber et al. , 2000). Also, cortical hyperexcitability, a consistent feature of ALS (Vucic et al. , 2006), 

has been shown to be associated with the split hand in ALS (Bae et al. , 2014).  Peripherally, motor 

axons innervating abductor pollicis brevis (APB) have physiologically higher excitability than those 

supplying abductor digiti minimi (ADM), and peripheral hyperexcitabilty in ALS in more pronounced 

in APB than ADM axons (Shibuya et al. , 2013). 

Accurate pincer grip is dependent on force adjustments of the fingers and hand, occurring in 

anticipation of the relevant action required (Johansson et al. , 1988, Serrien et al. , 1999, Venkadesan, 

2008). This involves a feed-forward regulation requiring the use of sensorimotor memory, as grip 

force parameters, such as object weight and friction between skin and object surface, are recalled from 

previous experience (Johansson et al. , 1988, Danion et al. , 2007).  

 

The primary motor cortex plays a crucial role in the regulation of grip force during object 

manipulation, influencing distal arm, hand, and finger muscles engaged in grasping, especially, but not 

exclusively, through monosynaptic cortico-motoneuronal connections with motoneurons in the spinal 
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cord (Lemon et al. , 1986, Maier et al. , 1993). Current evidence indicates that human hand-related 

mirror neurons are sensitive to object- and goal-directed behavior, not just biological motion (Enticott 

et al. , 2010). However, the main activity of the MNS during the execution and the observation of 

precision grasping pantomime may be located in the inferior parietal lobe rather than premotor areas 

(Plata Bello et al. , 2014). In ALS grip force is impaired and has been shown that there is greater force 

used than needed, when compared to controls (Nowak et al. , 2003). 

 

The role of mirror neurons in primary motor cortex presents a puzzle. In the macaque monkey, a 

significant proportion of pyramidal tract neurons (PTNs) in the primary motor cortex hand area 

exhibit mirror-like activity (Kraskov et al. , 2014).  Given that these neurons have traditionally been 

associated with active execution of motor tasks, it may at first seem surprising that many show 

significant modulation of their discharge during action observation. Even more surprising that a few 

examples were reported of PTNs which were also identified as having  cortico-motoneuronal post-

spike effects on intrinsic hand muscles (Kraskov et al. , 2014). However, a large fraction of the mirror 

PTNS in M1 showed suppression of discharge during action observation (Kraskov et al. , 2014); some 

cortico-motoneuronal PTNs also showed this suppression. One suggested role for these suppression 

mirror neurons relates to involvement in withholding unwanted movement during action observation, 

and that such a braking mechanism would avoid unintended overflow of activity (Schieber, 2011). 

Such overflow is also prevented because, compared with execution, M1 PTNs show greatly attenuated 

activity during action observation. It remains to be confirmed that suppression mirror neurons are 

present in humans (Mukamel et al., 2010), but there are daily occasions when one wants to covertly 

imitate an observed action, allowing the observer to watch the actor, while using their own motor 

system to identify and categorize the observed movement, without the activation overflowing into self-

movement (Vigneswaran et al. , 2013). 
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Gait and Walking 

In both young and older subjects, a network comprising the supplementary motor cortex, primary 

motor cortex, right prefrontal cortex, and cerebellum, (regions in which MNs are active) is activated 

during motor imagery of gait (Allali et al. , 2014). But these imaging recordings have not been 

replicated by cellular recording in the prefrontal cortex or cerebellum. There is an age-related 

increase in brain activity in the supplementary motor area, orbitofrontal cortex, and dorsolateral 

frontal cortex. Hippocampal activity is modulated by task difficulty in the elderly participants.(Allali et 

al. , 2014). 

 

When subjects watched a video clip showing an actor standing and walking in an egocentric 

perspective, compared to observing a clip of the clutch movement of a right hand, activation occurred 

in supplementary motor area, bilateral precentral gyrus, left dorsal premotor cortex, and cingulate 

motor area (Wang et al. , 2008). The tasks used in this study were considered to engage both mirror 

neurons and mental imagery. Action observation training and motor imagery, both presumed to 

involve mirror neuron activation, were shown to improve balance and gait, significantly better than 

conventional treatment used after a stroke (Kim et al. , 2013). 

 

A role in empathy 

Empathy is essential for human social interaction, allowing us to share and respond to the emotional 

experience of others in reference to ourselves (Decety, 2011, Decety et al. , 2012).  Empathy involves 

experiencing emotion vicariously, and understanding the reasons for those emotions. Multiple brain 

regions are involved in empathy processing with anterior cingulate and anterior insular regions being 

of particular importance (Saxe, 2006, Singer, 2006). Nevertheless, there has been also the suggestion 
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that the MNS is involved in empathy processing by providing an action observation framework for 

empathy with others. This may suggest that empathy is hard-wired in the brain as action observation 

automatically triggers empathetic processes. Indeed, it has been shown that people who are more 

empathic have stronger activations of the putative mirror system for hand actions and also the mirror 

system for emotions, supporting the notion that the MNS is linked to empathy (Acharya et al. , 2012, 

Zaki et al. , 2012).   

Still, empirical support linking empathy and MNS directly is still lacking and there is increasingly the 

suggestion that the MNS does not have an ‘interpretative’ role in empathy processing (i.e. emotionally 

interpreting the actions observed), instead it provides a top-down generated, predictive simulation of 

action understanding (Kable et al. , 2005, Csibra, 2008).  This does not mean that the MNS is not 

involved in empathy processing, instead it provides an action observation aspect that might facilitate 

the emotional resonance, with observing someone else being happy/sad/hurt increasing your 

emotional reaction. However, one can have empathy without any action observation, i.e. reading in a 

novel or newspaper about the joy or plight of others, may elicit strong empathic sentiments as well 

(Lamm et al. , 2011).  

The notion that the MNS might act more as an ‘empathetic facilitator’, instead of being part of the 

empathetic system itself also nicely dovetails with neurodegenerative findings. In particular, findings 

in behavioral variant of frontotemporal dementia (bvFTD), which shows severe loss of empathy even 

recognized in the diagnostic criteria (Piguet et al. , 2011, Rascovsky et al. , 2011), report that loss of 

empathy is more attributed to atrophy in the ventral medial prefrontal cortex (vMPFC), including 

anterior cingulate regions and not the MNS system per se (Shamay-Tsoory et al. , 2004, Lough et al. , 

2006).  Interestingly, similar vMPFC atrophy in bvFTD has been attributed to emotional blunting 

(Berenbaum et al. , 1987, Rosen et al. , 2002) and loss of insight (Hornberger et al. , 2014), highlighting 

the critical function of this region in affective perspective-taking (i.e. putting yourself in someone 
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else’s shoes), which is required for empathy to occur. Thus, in bvFTD the apparent empathy deficits 

might be more due to the failure of taking an affective perspective instead of action observation 

deficits, per se. The deficits in anterior cingulate/vMPFC associated with loss of empathy in bvFTD are 

of particular interest for ALS, where patients show consistently changes in anterior cingulate regions 

as well (Lillo et al. , 2012, Filippi et al. , 2013).  Indeed, recent studies suggest that impairments of 

emotional decision-making, and impaired empathy might be also more due to anterior cingulate and 

insula atrophy changes than ventral motor cortex atrophy in ALS (Girardi et al. , 2011, Cerami et al. , 

2014). If so, this would suggest that empathy impairments in ALS might be also more due to 

perspective taking deficits than pure action observation deficits similar to bvFTD.  

 

At a clinical level, empathy deficits in ALS are not as evident as observed in patients diagnosed with 

bvFTD. However, a potential relationship might exist between empathy deficits and the prevalent 

apathy in ALS, which is commonly detected on a clinical level. Indeed, apathy has been described has 

having 3 underlying mechanisms (emotional-affective; cognitive; auto-activation) (Stuss et al. , 2000, 

Levy et al. , 2006). In particular, emotional-affective apathy, described as an emotional blunting with 

reactivity to emotional situations poor and short-lived (Levy et al. , 2006), might be closely related to 

empathy deficits in ALS. This is nicely corroborated by many clinicians’ reports of ALS patients being 

surprisingly passive and accepting faced with such a catastrophic diagnosis, as the emotional blunting 

might have reduced the emotional reactivity to the diagnosis in the patients. Further, both empathy 

and emotional-affective apathy have been linked to dysfunction in vMPFC and particularly the anterior 

cingulate (Rosen et al. , 2002) and thus a strong link between empathy and apathy might exist in ALS. 

Clearly this topic needs further future investigations to elucidate in more detail the roles of the MNS 

and apathy in the generation of empathy deficits in ALS.   
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In terms of motor function more generally, both motor imagery and action observation have been 

shown to play a role in learning or re-learning complex motor tasks. They may share a common 

neurophysiological basis in the MNS (Gatti et al. , 2013).  Motor imagery, the ability to imagine 

movements, is defective in ALS (Stanton 2007) (Fiori et al. , 2013). In ALS, motor imagery has been 

shown to share similar neural networks (the primary motor, premotor, and supplementary motor 

cortex) as motor execution, as this is not different from normal subjects (Lule et al. , 2007). In contrast, 

there is reduced activation for motor imagery versus motor execution, in several other cortical areas, 

including the left inferior parietal lobule, and in the anterior cingulate gyrus and medial pre-frontal 

cortex (Stanton et al. , 2007).  

 

Mirror neurons in language and gesture 

It has been proposed that gesture and speech form a single system of communication, 

because they are linked to the same thought processes, even if expressed differently (Arbib et al. , 

2008, Cartmill et al. , 2012, Eisen et al. , 2014b). Observing and executing the grasp of small and large 

objects, for example a grape versus an apple, changes the degree of mouth opening and simultaneously 

pronunciation of syllables (Gentilucci et al. , 2008b). Frequently we pronounce words while executing 

gestures expressing the same meaning as the word. While pronouncing “OK”, one often forms a circle 

with the forefinger and thumb in contact at their tips, while the rest of the fingers extend outward 

(Gentilucci et al. , 2008a). Manual gestures predate the early development of speech in children and 

predict later success. The mirror neuron system could have provided a natural platform for the 

subsequent evolution of language. In non-human primates, the system provides for the understanding 

of action/imitation, both prerequisites for language (Corballis, 2010). However, others have argued 

strongly against the involvement of the mirror neuron system in language (Hickok et al. , 2014).  
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Electromyography has demonstrated concurrent contraction of the orbicularis oris, when participants 

execute a precision grip, pointing with the index finger, or curling the fingers. Concurrent contraction 

of other facial muscles not directly involved in articulation was not observed during these acts 

(Higginbotham et al. , 2008). This observation mimics the hand-mouth activity in non-human primates 

and prelinguistic infants, and the influence of grasping on labial articulation in adult humans 

(Gentilucci et al. , 2001). It also supports the idea that there is a transition from gestural to verbal, 

articulate communication systems. However any involvement of mirror neurons in this transition is 

still unproven.  

FreeThe free-flowing and intricately varied speech of humans, requires very fine control of breathing, 

attained by means of a major increase in thoracic innervation associated with monosynaptic 

connections to both inspiratory and expiratory musculature (Maclarnon, 2004). Bulbar-onset ALS 

most obviously impairs vocalization and swallowing but, also significantly impacts respiratory 

dysfunction through the evolutionarily conserved pre-Botzinger brainstem complex responsible for 

respiratory patterning (Cinelli et al. , 2013). A bulbar-mediated component in ALS is emotionality, 

with inappropriate crying and laughing. Emotional crying appears to be uniquely human (Trimble, 

2012). A central coordinator of the nuclei at the mesencephalic-pontine junction innervates the 

muscles involved in facial expression, respiration, and phonation (Arias, 2011), and receives inhibitory 

connections from the premotor and motor cortex, and excitatory input from the temporal cortex, 

amygdala, and hypothalamus.  

Early in the course of ALS, when symptoms are mild, speech typically appears normal. With disease 

progression, the voice quality may become strained, with a slow speaking rate involving monopitch 

and monoloudness. These impairments reflect failure of highly coordinated movements of the tongue, 

lips, and jaw, a prerequisite for normal articulation. Early in the disease speech patterns are consistent 

during typical speech, indicating successful adaption to disease-related articulatory deficits. However, 
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during fast speech, patterns become inconsistent indicating impaired articulatory control when the 

speech motor system operates near its performance limit (Mefferd et al. , 2014). In some patients with 

isolated speech deficits, FDG-PET studies, have shown subtle hypometabolism affecting the premotor 

and motor cortices (Clark et al. , 2014).  

 

Narrative discourse is an essential part of everyday communication. A recent study demonstrated that 

patients with ALS have a disorder of narrative expression that cannot be fully explained by their motor 

disorder (Ash et al. , 2014). This was true of patients without overt dysarthria or executive function 

defects. Based on limited cortical imaging (gray matter atrophy and white matter reduced fractional 

anisotropy) the impaired narrative discourse was considered to be related in part to executive 

limitations that interfere with the planning and organization needed for narrative expression and to 

disruption of a large-scale neural network in the frontal lobe that appears to support narrative 

discourse (Ash et al. , 2014). The study did not correlate the narrative defect with EMG of orofacial 

muscles. 

 

Conclusion 

The study of mirror neurons generates both interest and controversy. Mirror neurons respond to 

actions that we observe in others, and discharge in the same way when we recreate that action 

ourselves. But And perhaps they may well be involved in a myriad of other sophisticated aspects of 

human behavior and thought processes yet to be fully deciphered. Numerous In support, numerous 

single unit recording studies have elucidated mirror neuron characteristics in different cortical 

regions of the non-human primate brain, and the presence of single mirror neurons has been 

demonstrated in humans (Mukamel et al. , 2010). In general it is probably more appropriate in 

humans to refer to a fronto-parietal mirror neuron system (MNS). Failure of this system has been 
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considered important in disparate conditions including autism spectrum disorders (Hamilton, 2013), 

schizophrenia (Mehta et al. , 2014), Alzheimer’s disease and Parkinson’s disease (Alegre et al. , 2011).  

 

Returning then to ALS, is it conceivable that involvement of a mirror neuronal system may form part 

of a neurodegenerative cascade? If it is accepted that impaired empathy and defective motor function 

with impaired motor control are all features of ALS, that may indeed suggest failure of the MNS.  But 

realistically, current knowledge of human mirror neurons and their functional relation with other 

brain systems makes this a difficult hypothesis to formally assess. Nevertheless, because ALS affects 

corticospinal neurons and the latter show mirror-like properties, their failure has likely effects beyond 

those typically ascribed to upper motor neuron dysfunction in ALS. 

 

A significant difficulty in identifying impairment of the MNS in ALS, and other neurodegenerative 

diseases, is the slowly progressive nature of these disorders, and their prolonged preclinical period 

(Eisen et al. , 2014a, Thomsen et al. , 2014). This presumably enables a degree of adaption, masking 

subtle abnormalities in the MNS, which might otherwise induce clinical deficits. As however, it 

remains plausible that as imaging and electrophysiological recording become more refined, the human 

MNS is likely to reveal important pathophysiological data related to ALS, which in turn is hoped will 

aid in early diagnosis and thereby better intervention. 
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