55 research outputs found

    Understanding the combined effects of multiple stressors : a new perspective on a longstanding challenge

    Get PDF
    This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.Publisher PDFPeer reviewe

    The Hydrogen Atom in Combined Electric and Magnetic Fields with Arbitrary Mutual Orientations

    Get PDF
    For the hydrogen atom in combined magnetic and electric fields we investigate the dependence of the quantum spectra, classical dynamics, and statistical distributions of energy levels on the mutual orientation of the two external fields. Resonance energies and oscillator strengths are obtained by exact diagonalization of the Hamiltonian in a complete basis set, even far above the ionization threshold. At high excitation energies around the Stark saddle point the eigenenergies exhibit strong level repulsions when the angle between the fields is varied. The large avoided crossings occur between states with the same approximately conserved principal quantum number, n, and this intramanifold mixing of states cannot be explained, not even qualitatively, by conventional perturbation theory. However, it is well reproduced by an extended perturbation theory which takes into account all couplings between the angular momentum and Runge-Lenz vector. The large avoided crossings are interpreted as a quantum manifestation of classical intramanifold chaos. This interpretation is supported by both classical Poincar\'e surfaces of section, which reveal a mixed regular-chaotic intramanifold dynamics, and the statistical analysis of nearest-neighbor-spacingComment: two-column version, 10 pages, REVTeX, 10 figures, uuencoded, submitted to Rhys. Rev.

    Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Get PDF
    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health

    Potential value of automated daily screening of cardiac resynchronization therapy defibrillator diagnostics for prediction of major cardiovascular events: results from Home-CARE (Home Monitoring in Cardiac Resynchronization Therapy) study

    Get PDF
    Aim To investigate whether diagnostic data from implanted cardiac resynchronization therapy defibrillators (CRT-Ds) retrieved automatically at 24 h intervals via a Home Monitoring function can enable dynamic prediction of cardiovascular hospitalization and death. Methods and results Three hundred and seventy-seven heart failure patients received CRT-Ds with Home Monitoring option. Data on all deaths and hospitalizations due to cardiovascular reasons and Home Monitoring data were collected prospectively during 1-year follow-up to develop a predictive algorithm with a predefined specificity of 99.5%. Seven parameters were included in the algorithm: mean heart rate over 24 h, heart rate at rest, patient activity, frequency of ventricular extrasystoles, atrial–atrial intervals (heart rate variability), right ventricular pacing impedance, and painless shock impedance. The algorithm was developed using a 25-day monitoring window ending 3 days before hospitalization or death. While the retrospective sensitivities of the individual parameters ranged from 23.6 to 50.0%, the combination of all parameters was 65.4% sensitive in detecting cardiovascular hospitalizations and deaths with 99.5% specificity (corresponding to 1.83 false-positive detections per patient-year of follow-up). The estimated relative risk of an event was 7.15-fold higher after a positive predictor finding than after a negative predictor finding. Conclusion We developed an automated algorithm for dynamic prediction of cardiovascular events in patients treated with CRT-D devices capable of daily transmission of their diagnostic data via Home Monitoring. This tool may increase patients’ quality of life and reduce morbidity, mortality, and health economic burden, it now warrants prospective studies

    Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Environmental Pollution 152 (2008): 205-216, doi:10.1016/j.envpol.2007.05.027.A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits “The Gully” Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-97 (prior to major development) and 2002-03 (five years after development began), and 3 samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n=36), and for persistent contaminants (n=23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially co-incident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4’-DDE and trans-nonachlor in 2002-03 relative to 1996-97.Research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada, World Wildlife Fund Canada Endangered Species Recovery Fund, Fisheries and Oceans Canada, the National Geographic Society, the Canadian Federation of Humane Societies and two U.K. Royal Society International Collaborative Awards. S.K.H. was supported by a Canadian Commonwealth Scholarship and Royal Society Dorothy Hodgkin Research Fellowship. C.D.M. was awarded a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. J.Y.W was supported by an NSERC PGS B fellowship and the Woods Hole Oceanographic Institution

    A review of the toxicology of oil in vertebrates : what we have learned following the Deepwater Horizon oil spill

    Get PDF
    This research was made possible by a grant from The Gulf of Mexico Research Initiative. This publication is UMCES contribution No. 6045 and Ref. No. [UMCES] CBL 2022-008. This is National Marine Mammal Foundation Contribution #314 to peer-reviewed scientific literature.In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.Publisher PDFPeer reviewe

    Comparative analysis of three brevetoxin-associated bottlenose dolphin (Tursiops truncatus) mortality events in the Florida Panhandle region (USA)

    Get PDF
    In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link
    corecore