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• Assessing the combined effects of stressors
is a primary multidisciplinary goal.

• We review the science of multiple
stressors and inconsistencies across disci-
plines.

• We present a conceptual framework
encompassing existing analytical ap-
proaches.

• We reinforce the centrality of manage-
ment in guiding analysis and interpreta-
tion.

• Our approach reconciles cross-
disciplinary differences and supports
management.
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Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by
human activities, within the broader context of natural processes and increasing pressure from climate change. Esti-
mating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance.
However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and
we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of
multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches
for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing as-
sumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis
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onmechanisms improves analytical precision and predictive power but could introduce bias if the underlying assump-
tions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full
range of anticipated combinations of stressor types andmagnitudes. We illustrate how this spectrum can be formalised
into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources
while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs
and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable
trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify
the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of ad-
verse impacts on populations and ecosystems below acceptable thresholds.
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Adaptive management
Climate change
Combined effects
Mechanistic modelling
Multiple stressors
Population consequences
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1. Introduction: the science of multiple stressors and the problems of
inconsistent concepts and terminology

Most terrestrial and aquatic populations in the Anthropocene are ex-
posed to a myriad of physical, chemical, or biotic factors that can move
themout of their normal operating range (hereafter, ‘stressors’; see Glossary
in Appendix A) (Geldmann et al., 2014; Halpern et al., 2015; National
Academies, 2017; Ormerod et al., 2010). Expanding human activities are
increasing the variety and intensity of stressors, whose effects are also exac-
erbated by accelerating climate change (Brown et al., 2013; Gissi et al.,
2021; He and Silliman, 2019; Li et al., 2018). Assessing, predicting, and
managing the combined effects of multiple natural and anthropogenic
stressors is therefore a primary management and conservation goal, as
reflected in many regulatory frameworks. Because stressors are heteroge-
neous and can affect individuals, populations, communities, and their hab-
itats, estimating their combined effects is salient in many disciplines, from
pharmacology and epidemiology (Groten et al., 2001; Taylor et al.,
2016), to toxicology (Altenburger et al., 2013; Hernandez et al., 2019), en-
vironmental science, conservation biology, and ecology (Breitburg et al.,
1998; Côté et al., 2016; Folt et al., 1999; Orr et al., 2020; Rudd and
Fleishman, 2014; Simmons et al., 2021; Vinebrooke et al., 2004).

Across disciplines, a common challenge is that combined effects cannot
be predicted reliably from the individual effect of each stressor, because the
way each stressor operates in isolation may change or be modified in the
presence of other stressors (Folt et al., 1999; Orr et al., 2020; Piggott
et al., 2015). The terms ‘additivity’ and ‘interaction’ (either ‘synergistic’ or
‘antagonistic’, depending on whether the additional stressors mitigate or
aggravate effects) are frequently used to describe how stressors operate in
combination, albeit with contrasting and often controversial interpreta-
tions. In a recent review, Orr et al. (2020) discussed the lack of communica-
tion across disciplines, highlighting that the same termmay have dissimilar
meanings and different terms may be used for the same meaning by differ-
ent communities. Even within disciplines, terminology has been used in-
consistently (e.g., Hertzberg and MacDonell, 2002; Orr et al., 2020;
Webster, 2018). This has distracted research on the topic from its applied
goals and complicated development of a unified, cross-disciplinary ap-
proach to multiple stressors (Orr et al., 2020).

Many existing methods draw on concepts from pharmacology and toxi-
cology and use data-driven analyses to assess whether two stressors inter-
act. The classic approach involves factorial studies, where the effect of a
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dose of each stressor is evaluated in isolation, and compared to the effect
of a mixture of both stressors (Schäfer and Piggott, 2018). Here, we define
‘dose’ as the magnitude or amount of a stressor that is directly experienced,
ingested, inhaled, or absorbed by an animal. The implicit null model,
known as response addition in toxicology, assumes the combined effect is
equal to the sum of the separate effects. This equivalence is tested via linear
models (e.g., analysis of variance, or ANOVA) and, whenever it is not met,
studies conclude that there has been an interaction.

There are alternative null models for predicting the combined effect of
two stressors assuming they do not interact (Schäfer and Piggott, 2018).
For example, a dose addition null model can be used when two stressors
share the same molecular mechanism. In this case, stressor doses are
corrected based on their relative potency (e.g., their toxicity) and summed
into a joint dose to determine the combined effect (Bliss, 1939; Loewe and
Muischnek, 1926) via a dose-response function (Fig. 1).

Non-linear dose-response functions complicate the analysis of factorial
experiments. Consider an experiment that tests the effect of adding a
fixed dose of stressor B to a population of subjects exposed to stressor A.
Each subject is characterised by a given sensitivity to stressor A, defined
as the minimum stressor intensity leading to an effect (Schäfer and
Piggott, 2018). If there is a uniform distribution of sensitivity (Fig. 2A1),
the dose-response function for the population is linear (Fig. 2A2), and the
additional effect of stressor B is constant across all doses of stressor A
(Fig. 2A3). However, the distribution of subjects' sensitivity could be
unimodal (Fig. 2B1) (Schäfer and Piggott, 2018), leading to a sigmoidal
dose-response function (Fig. 2B2). In this case, the additional effect of the
second stressor is not constant even when the two stressors are additive
(Fig. 2B3). In other words, the same function can lead to opposite conclu-
sions on the occurrence and direction of an interaction depending on the se-
lected range of stressor doses.

As a result, classic factorial experiments seldom conclude that com-
bined effects are additive (Schäfer and Piggott, 2018). This fallacious
interpretation of interactions is still common, even though it has been
repeatedly rejected in many fields (e.g., Hertzberg and MacDonell,
2002; Howard and Webster, 2009; National Academies, 2017; Schäfer
and Piggott, 2018; Tekin et al., 2020; Webster, 2018). Similarly, sudden
changes in response with small changes in stressor doses, often referred
to as tipping points (Hillebrand et al., 2020) and attributed to complex
stressor interactions, may simply emerge from the transition from low
to steep slope in non-linear dose-response functions (Kreyling et al.,



Fig. 1. Combined effect of two stressors A and B, which share the same molecular
mechanism and dose-response function (solid black line), obtained by adding the
dose of stressor A to that of stressor B (dose addition). The dashed and dotted
green lines represent the effect of A and B alone, respectively. The combined
effect of A + B (solid green line) is much higher than the prediction if their
effects are assumed to be additive (orange line). More details are given in
Appendix B.
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2018). Factorial studies testing only one combination of stressor doses
are also less useful from a management perspective, because they only
support predictions of the effects of other doses if a linear relationship
is assumed (Orr et al., 2020).

Besides discussion of available null models to test (Schäfer and Piggott,
2018), alternative definitions of ‘interaction’ have also been put forward.
For example, Gennings et al. (2005) defined interactions as occurring
when the presence of one stressor changes the shape of the dose-response
function of the other stressor. They used a link function to linearise the
dose-response in a generalised linear modelling framework and referred
to the ‘shape’ as the slope in the linear predictor. Here, we extend their def-
inition and postulate that an interaction occurs whenever the second
stressor modifies the coefficient(s) linking the first stressor and the re-
sponse. In other words, two stressors are additive when the dose-response
function describing their combined effect can be separated into two func-
tions without shared terms (Appendix D). While conceptually valid, this
definition is challenging to use in real-world ecological scenarios. Estimat-
ing the dose-response function for a stressor in the presence and absence of
a second stressor is seldom feasible (Hertzberg and MacDonell, 2002;
National Academies, 2017).Moreover, a change in the shape of such a func-
tion does not, on its own, illuminate any of the mechanisms that underpin
the way stressors combine.

Data-driven analyses that focus on detecting and categorizing interac-
tions are thus of limited use for understanding combined effects because
their outcome depends on how the absence of interaction is defined,
which varies across researchfields (Hertzberg andMacDonell, 2002). Addi-
tional confounding factors include the context-dependent nature of many
effects, the sequence of exposure, the temporal scale and interval between
exposures, and the organisational level (biochemical, physiological, indi-
vidual, population, ecosystem) at which effects are measured (Boyd and
Brown, 2015; Clements et al., 2012; Gunderson et al., 2016; Jackson
et al., 2021; Orr et al., 2020). As a result, attempts to find common patterns
in the prevalence and direction of stressor interactions in various systems
have generated conflicting results (Ban et al., 2014; Côté et al., 2016;
Crain et al., 2008; Darling and Côté, 2008; Dieleman et al., 2012; Harvey
et al., 2013; Holmstrup et al., 2010; Jackson et al., 2016; Lange et al.,
2018; Piggott et al., 2015; Przeslawski et al., 2015; Tekin et al., 2020;
Yue et al., 2017). The only broad conclusion is that situations where the
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effects of multiple stressors are simply additive are likely rare (National
Academies, 2017; Orr et al., 2020).

In summary, the debate over interactions has limited applied relevance
(Côté et al., 2016; Hertzberg and MacDonell, 2002; Schäfer and Piggott,
2018). In contrast, there has been growing cross-disciplinary recognition
that a detailed understanding of the mechanisms in which stressor effects
combine, from chemical to ecological, provides greater predictive power
(Ankley et al., 2010; Hernandez et al., 2019; Hertzberg and MacDonell,
2002; Hooper et al., 2013; Schäfer and Piggott, 2018; Simmons et al.,
2021). In pharmacology, pharmacokinetic models are increasingly used
to capture the movements of compounds in the body (Cohen Hubal et al.,
2019). In toxicology, combined effects are formulated in terms of adverse
outcome pathways (AOPs), which describe the linkages across levels of bi-
ological organisation, mostly focusing on sub-organismal levels (Ankley
et al., 2010). In ecology, the cascade of effects that connect individuals to
populations and ecosystems has been formulated into explicit transfer func-
tions (National Academies, 2017; Pirotta et al., 2018; Wilson et al., 2020).
These mechanistic approaches help address the more relevant questions:
do combined effects result in an adverse impact for the unit of interest
(e.g., an individual or population), and how can that risk be reduced?

The aimof this paper is therefore twofold. First, we present a conceptual
framework that encompasses the diversity of approaches proposed to ana-
lyse the combined effects of multiple stressors, demonstrating that they
lie on a spectrum of mechanistic assumptions that are built into the analy-
sis. Second, we reaffirm the centrality of management needs in guiding
the interpretation of combined effects. We argue for a pragmatic approach
where case-specific priorities, predictive power and data availability drive
the choice of analytical methods.

2. Reconciling the diverse approaches for studying the combined
effects of multiple stressors: the assumption spectrum

Initially, we consider a management scenario where only two stressors
are operating, and assume that a common response variable can be identi-
fied. As we show below, there is a spectrum of approaches for assessing
their combined effects. This ‘assumption spectrum’ reflects increasing
mechanistic assumptions about how the system works (Fig. 3), formalised
into a functional model. The increasingly theoretical description of the un-
derlying biological processes results in a progressive move away from a
phenomenological, or data-driven, analysis of the relationship between
stressors and effects. The distinction betweenmechanistic and phenomeno-
logical models has been discussed before, and all ecological models lie
somewhere between these two extremes (e.g., White and Marshall (2019)
and references therein). Here, we argue that organising the analysis of com-
bined effects in this light provides a useful framework for selecting effective
modelling techniques in different scenarios of data availability and man-
agement needs.

At one extreme of the assumption spectrum, where sufficient data are
available from a range of stressor doses, combined effects can simply be de-
scribed empirically. Under this data-driven approach, minimal assumptions
are made about how the two stressors act, alone or in combination. For ex-
ample, a minimum assumption could be that the effect of varying stressor
levels is locally smooth. Such an approach is largely unbiased, because
any pattern is directly inferred from the data, but it may be highly impre-
cise, because extensive data are required to reduce variance around the de-
scribed relationships. A fully empirical approach does not require a test for
the occurrence of interactions, because combined effects are described (and
can be predicted) across the observed range of stressor doses. However, it
has limited predictive power beyond this range. Surfaces describing how
varying responses as a function of stressor doses have been fitted to the ef-
fects of mixtures of chemical compounds in toxicology (Ren, 2003;
Webster, 2018), and of combined environmental and anthropogenic
stressors in epidemiology (e.g., Burkart et al., 2013). In ecology, they
have been used to model the effects of precipitation and temperature on
vegetation index (Larsen et al., 2011), the physiological consequences of
combined environmental stressors (e.g., Porter et al., 1999) and the



Fig. 2. Illustration of the problems with classic factorial experiments. A1) Uniform distribution of sensitivity to stressor A, i.e., the minimum stressor intensity leading to an
effect. This results in a linear dose-response function (solid black line; A2); A2 also reports the combined effect of stressor A with a fixed dose of stressor B, when A and B are
additive (dashed line) or interacting (blue and orange lines). A3) The additional effect of the fixed dose of stressor B is constant across the doses of stressor A when the two
stressors are additive (dashed black line) and increases or decreases when the two are interacting (blue and orange lines). B1) Unimodal distribution of sensitivity to stressor
A: a minority of individuals are sensitive to high or low doses of the stressor, while themajority are sensitive to intermediate values. This results in a sigmoidal dose-response
function for stressor A (solid black line; B2); B2 also reports the combined effect of stressor A with a fixed dose of stressor B, when A and B are additive (dashed line) or
interacting (blue and orange lines). B3) Because the dose-response function is not linear, the additional effect of the fixed dose of stressor B is not constant even when A
and B are additive (dashed black line). Therefore, adding a second stressor may cause a combined effect that is either larger or smaller than the sum of the effects of the
stressors acting in isolation. The solid black line indicates the effect of the fixed dose of stressor B on its own. More details are given in Appendix C.
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behavioural responses to disturbance sources as a function of contextual
factors (e.g., Dunlop et al., 2017). At higher organisational levels, multivar-
iate auto-regressive models have been fitted to time-series data (often from
freshwater plankton communities) to assess the effects of multiple abiotic
and biotic stressors on species density (Hampton et al., 2013). When the
data are subject to large measurement errors, hierarchical modelling tech-
niques (e.g., state-space models; Auger-Méthé et al., 2021) can be used to
explicitly model uncertainty in the observation process. Another data-
driven example is the robust definition of interaction based on Gennings
et al. (2005), which requires extensive data to characterise dose-response
functions.

Moving along the spectrum, the problem can be progressively
constrained by making increasingly stringent mechanistic assumptions. In
doing so, precision should be increased, because the assumed functional
forms reduce the influence of empirical noise on the estimation, and predic-
tive power beyond the observed range of doses is enhanced. However,
these advantages come at the risk of introducing biases if the assumptions
are incorrect. Information about the mechanisms through which stressors
operate is available at all levels of stressor effects, frommolecular to ecolog-
ical. For example, a sigmoidal dose-response function (the ‘Hill equation’) is
traditionally used to represent the effect of chemical stressors binding to a
receptor (Goutelle et al., 2008) (Fig. 4A). Physiological dose-response func-
tions can be used to represent the variation of biological rates in response to
environmental stressors. For example, the dependence of biological rates
4

on temperature can be described using thermal performance curves
(Angilletta, 2009), e.g., the Sharpe-Schoolfield model (Schoolfield et al.,
1981),which are typically unimodal (Fig. 4B). At the level of the individual,
exposure to a stressor can elicit changes in behaviour. Behavioural dose-
response functions have been estimated using a probit transformation of
the probability of responding (Miller et al., 2014) (Fig. 4C). A further gen-
eralization of this approach could involve time-to-event hazard models,
where the ‘hazard’ of responding is modelled as a function of exposure to
stressor doses, either in discrete (Tutz and Schmid, 2016) or continuous
time (Kleinbaum and Klein, 2014). A focus onmechanisms can also help in-
vestigate the functional forms for ecological dose-response functions. For
example, prey limitation can act as a stressor affecting energy acquisition
by a predator (where available prey density represents the dose). Holling
(1965) and Real (1977) considered the mechanisms for foraging and devel-
oped a general equation encompassing different functional responses
(Fig. 4D).

Mechanistic assumptions can similarly guide investigation of the com-
bined effects of stressors. For chemical toxicants, deviations from the
dose-addition model emerge if the presence of one chemical changes the
bioavailability, uptake, metabolisation, or excretion of the other
(Cedergreen, 2014). For example, Delfosse et al. (2015) showed how a
pharmaceutical oestrogen and a persistent organochlorine pesticide can
each enhance the binding affinity of the other to a shared receptor. The
choice of alternative null models in factorial studies (e.g., independent



Fig. 3. The assumption spectrum, encompassing approaches to conceptualise and analyse the combined effects of multiple stressors. Data-driven approaches require a lot of
empirical information and have limited predictive power but make few assumptions and thus show low bias. Process-driven approaches have higher precision and predictive
power but make stronger assumptions about mechanisms; incorrect assumptions may introduce bias.
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action or dominance models) can also be guided by appropriate mechanis-
tic assumptions (Schäfer and Piggott, 2018). In the behavioural response
scenario described above, a second stressor could increase the average
threshold at which individuals respond, while, for ecological functional re-
sponses, a second stressor could decrease prey encounter rate or increase
handling time. Analysis of data from factorial experiments using linear
models (see Introduction) is an example of a stringent mechanistic assump-
tion that is likely to introduce bias.

At the mechanistic end of the spectrum, a fully mechanistic approach
uses extensive a priori assumptions about the underlying functional pro-
cesses (Fig. 3). While most mechanistic models are not fitted directly to
data, there has been progress in fitting complex, process-driven models,
e.g., using approximate Bayesian computation or emulation (Hooten
et al., 2020). Mechanistic approaches have high predictive power (and
therefore wide management applicability), but also high structural uncer-
tainty and concomitant risk of bias from selecting an inappropriate model
(Barton et al., 2007; Regan et al., 2002). Chemical, biological and ecologi-
cal knowledge can be used to describe the pathways linking stressor expo-
sure to potential adverse outcomes at different organisational levels
(Simmons et al., 2021). This idea has been formalised in the concept of bi-
ological upscaling in conservation physiology (Cooke et al., 2014) and
AOPs in ecotoxicology (Ankley et al., 2010). For example, Hooper et al.
(2013) used AOPs to predict that toxicants may alter the ability of organ-
isms to respond to climate change and, in turn, climate stressors may affect
chemical toxicity. Highly mechanistic models have also been used for mix-
tures of drugs and toxicants. For example, physiologically based pharmaco-
kinetic and toxicokinetic models describe the absorption, distribution,
metabolism, and excretion of chemicals, mapping chemical movement
among organs and tissues, and modelling their combined effects mechanis-
tically (Cohen Hubal et al., 2019).

When stressors operate along the bioenergetic response pathway
(i.e., they interfere with the baseline flow of energy acquisition and al-
location), a Dynamic Energy Budget (DEB) model can be used to cap-
ture energy fluxes mechanistically and specify the level at which
stressors operate (Costa, 2012; Kooijman, 2009; Nisbet et al., 2012).
Bioenergetic modelling could also integrate the energetic consequences
of stressors traditionally considered to act along different response
5

pathways. For example, Bennett et al. (2021) showed that persistent or-
ganic pollutants can interfere with energy balance regulation in marine
mammals, Regnault and Lagardere (1983) found that noise exposure
increases metabolism in shrimp, and Anestis et al. (2010) reported
that changes in seawater temperature alter the metabolism of mussels
and promote the outbreak of parasites that further impair energy
balance. In ecology, mechanistic models of combined effects on indi-
viduals and populations (e.g., using bioenergetic principles) can be for-
mulated as individual-based models (IBMs, also known as agent-based
models), where individual agents characterised by internal state vari-
ables are simulated to interact with dynamic landscapes over time
(Grimm and Railsback, 2013). Galic et al. (2018) provided an example
involving a freshwater amphipod, Semeniuk et al. (2014) used an IBM
to assess the effects of anthropogenic stressors on the habitat use and
energetics of a terrestrial mammal, while McRae et al. (2008) used
this approach to predict the population consequences of heterogeneous
stressors on two bird species under different land-use and climate
change scenarios.

In a recent paper, Simmons et al. (2021) argue that classifying stressors
by their target and ecological scale can reconcile the disparate nature of
their sources and provide a focus on their operating mechanisms of impact.
They reviewed a series of mechanistic models that can be used to simulate
combined effects, particularly at higher organisational levels. For example,
interconnections between multiple stressors and the unit of interest can be
visualised using threat webs (Geary et al., 2019), which can then be
parameterised using network-based methods such as structural equation
modelling (e.g., Villeneuve et al., 2018) and Bayesian belief networks
(e.g., Molina-Navarro et al., 2020).

National Academies (2017) proposed a general mechanistic framework
to study the Population Consequences of Multiple Stressors (PCoMS) that
captures and connects multiple scales, targets and organisational levels
(up to population). The health of an individual is defined as its “ability to
adapt and self-manage” (Huber et al., 2011), and is assumed to result
from the integration of multiple currency variables (Cohen et al., 2017;
Simmons et al., 2021), such as energy stores, stress hormones, immune
function, oxidative damage and organ status (National Academies, 2017;
Pirotta et al., 2018). The PCoMS framework aims to estimate how stressors



Fig. 4. Examples of dose-response functions informed by knowledge of the mechanisms. A) Sigmoidal dose-response function of a toxicant (the Hill equation), representing
the effect of ligands binding to a receptor. B) Thermal performance curve described using the Sharpe-Schoolfield model. C) Probability of individual animals changing their
behaviour in response to increasing levels of a source of disturbance. D) Examples of type I, II and III functional responses, i.e., prey consumption rate as a function of prey
density.
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affect these health variables using empirical data, where available, and ap-
propriate mechanistic models. For example, a bioenergetic model can be
used to describe the energetic response pathway, throughwhich an individ-
ual's energy budget may be disrupted by stressors that affect its ability to
feed. Sub-lethal, toxic effects on an organ or system can also cause irrepara-
ble damage or initiate disease processes, leading to higher risk of mortality
(Hall et al., 2018). Moreover, reproduction might be directly impaired by
an individual's stress levels, contaminant burden or compromised immune
status (Aulsebrook et al., 2020; Hall et al., 2018; Rolland et al., 2017; Viney
et al., 2005), while stress levels and survival probability can vary if stressors
alter predation risk (Madin et al., 2015). Different response pathways in the
PCoMS framework can also affect each other. For example, there are
metabolic costs of mounting an immune response (Lochmiller and
Deerenberg, 2000), and the chronic elevation of stress hormones is
known to downregulate immune responses (Råberg et al., 1998; Sheldon
and Verhulst, 1996). Upscaling these mechanistic models to the level of
communities and ecosystems involves a series of conceptual and methodo-
logical complications, discussed in Appendix E.

Many analytical approaches described in this section involve a com-
bination of empirical estimation and mechanistic assumptions, and the
strength of comparable assumptions may vary among systems. This
makes it difficult to place different approaches at specific positions
along the assumption spectrum. However, this framework is useful to
explicitly explore the strengths and limitations of each model compo-
nent and, particularly, the trade-off between precision and bias
(Fig. F.1; Appendix F).
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3. The assumption spectrum in practice: an ecological example

We illustrate the assumption spectrum and explore its conceptual and
methodological implications through an ecological example. We consider
a system where a consumer acquires energy from a limiting resource,
whose availability may be affected by natural fluctuations and climate
change. We envisage that human activities also affect the consumer. It is
likely that data across combinations of stressor doses for such a system
will be limited, and we thus use it to demonstrate the progression from
data-driven to process-driven analytical approaches.

For example, the recovery of the critically endangered North
Atlantic right whale (Eubalaena glacialis) is impaired by prey limitation
and accidental entanglement in fishing gear, among other stressors
(Fortune et al., 2013; Moore et al., 2021; Rolland et al., 2016; van der
Hoop et al., 2017). Both can be thought of as continuous stressors,
i.e., a range of prey densities is available in the species' habitat, and en-
tanglement in fishing gear can vary in severity and duration (which, for
simplicity, we assume can be summarised into some measure of entan-
glement level). Severe entanglement can kill animals by physical injury
(Cassoff et al., 2011; Sharp et al., 2019); non-lethal entanglement can
worsen the effects of prey limitation by interfering with prey capture
and increasing drag forces while swimming (Pettis et al., 2017; van
der Hoop et al., 2017). The combined effect of the two stressors that
we analyse here is at the energetic level, where the prey acquired by
an individual over some temporal window of interest (e.g., a day) is
the shared response variable.



E. Pirotta et al. Science of the Total Environment 821 (2022) 153322
First, we consider a hypothetical scenario where consumption rate can
be observed under many combinations of prey density and entanglement
level (Fig. F.2; Appendix F). In this situation, a data-driven, non-
parametric surface could be used to describe their combined effect
(Wood, 2006) (Fig. 5A). We could include additional constraints to the sur-
face, make it smoother, set consumption rate to zero when prey density is
zero, and constrain the function to be monotonic (Pya and Wood, 2014).
However, if only a subset of prey density values are observable in practice,
the results of this estimation would not support predictions of consumption
rate in a novel, unobserved ecological scenario (e.g., unprecedented condi-
tions caused by climate change; Fig. 5B).

We can impose further assumptions to improve predictive power. A fac-
torial experiment would be inappropriate in this case (Fig. 5C). A better so-
lution is obtained by assuming a type II functional response to represent
feeding activity at varying prey densities, assuming that entanglement
level affects the parameters of the function (Fig. 5D). This more process-
driven approach supports predictions beyond the range of observed
stressors and identifies clear mechanisms for how the stressors operate in
isolation and in combination. However, mistakes can still arise: for exam-
ple, a type III functional responsemight better represent the feeding process
(Fig. 5E). Alternative scientific hypotheses can be encoded as different
Fig. 5. The assumption spectrum, illustrated using an ecological example involving Nor
product with fixed degrees of freedom in a Generalised AdditiveModel (GAM). B) GAM
of interest (red dot). C) Results of a factorial experiment, only measuring consumption
sampling means and standard deviations of consumption rate); a traditional two-way
response variable, as represented by the blue plane. D) Type II functional response, wit
fitted to the data in a Bayesian setting (using Markov chain Monte Carlo algorithms). E
of a simple mechanistic model simulating the movements of 10 individuals over a da
levels; mean consumption rates across individuals for increasing prey density, give
Appendix F.
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parametric functions, using model selection methods to identify the best
fitting one.

When empirical information is scarce, a fullymechanistic approachmay
be used, informed by existing knowledge of this or other comparable sys-
tems. We might develop, for example, a simple movement simulation
model to describe how individuals in an area explore their environment
and encounter food patches (Fig. F.3; Appendix F). We could simulate vary-
ing levels of entanglement affecting both feeding rate and the maximum
amount of prey intake per unit time. This simple IBM could be used to re-
construct the average daily consumption rate for an individual under vari-
ous combinations of prey density and entanglement level (Fig. 5F). It may
be extended beyond one day, introducing rules for leaving the area and
longer-term motivations, or modelling energy levels explicitly (e.g., using
a DEB model). Ultimately, it may be formulated as a population model
under the PCoMS framework.

4. Management implications: identifying thresholds for adverse
impacts and selecting combinations of stressors to manage

From a management and conservation perspective, establishing
whether stressors interact or not is secondary compared tofinding practical
th Atlantic right whales. A) Non-parametric surface fitted to the data, using a tensor
surface where the range of the data does not cover the combination of stressor levels
rate for four combinations of the two stressors (the red dots and segments are the
analysis of variance implicitly assumes that each stressor has a linear effect on the
h entanglement level affecting the search rate and prey handling time parameters,
) Comparison of type II (orange) and type III (blue) functional responses. F) Results
y for different combinations of 100 prey density scenarios and 11 entanglement
n each simulated level of entanglement. More details are given in the text and



Fig. 6. Example of management objective defining acceptable combinations of stressor levels. In shaded blue, the dose-response surface; in A, this represents variation in
consumption rate for varying levels of prey density and entanglement level, and in B this represents variation in survival rate for varying levels of entanglement and ship
collisions. The shaded red surface represents the rates required to meet the management objective; in A, the surface is tilted because entanglement imposes additional
energetic costs that are not captured in the dose-response surface (but need to be accounted for when calculating the minimum consumption rate).
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solutions to reduce the current risk to populations. Management goals
could guide the selection of which stressors within the available mixture
can effectively be manipulated to ensure that the risk of adverse impacts
on populations remains below acceptable thresholds (Groffman et al.,
2006; Huggett, 2005; Kelly et al., 2015), i.e., the stressors that are relevant
in practice (Diefenderfer et al., 2021; National Academies, 2017).

Some stressors, such as climate change, persistent pollutants, or the re-
gime shifts resulting from centuries of human activities (e.g., overfishing or
deforestation) (e.g., Jepson and Law, 2016; Pauly et al., 2005; Solomon
et al., 2009) cannot be mitigated rapidly. In the short term, the focus
must therefore be on tackling stressors that can be reduced, such as anthro-
pogenic noise, non-persistent pollutants, extraction of biotic and abiotic re-
sources (e.g., mining, local fishing effort, farming, unintended harvesting),
and disturbance from human presence (Brown et al., 2013; Falkenberg
et al., 2013). Empirical evidence or mechanistic predictions of interactions
can help quantify the cascading benefits of reducing each stressor. In partic-
ular, a surface could be drawn across the dose-response surface identifying
acceptable combinations of stressor doses, i.e., those resulting in a com-
bined effect within the target management objective.

In the ecological example described in Section 3, this surface would be
at the level of consumption rate that results in individual energy budgets
supporting a viable population (Fig. 6A). The surfacemight have to be tilted
to account for other stressor effects: for example, higher consumption rate is
required at higher entanglement levels to compensate for the increased cost
of movement, which is not accounted for in the functional response
(Fig. 6A). While our example focused on the energetic effects of prey avail-
ability and entanglement, two of the controllable stressors (entanglement
and collision with vessels) kill enough individuals to hinder the species' re-
covery (Moore et al., 2021). Risk factors for these stressors and their effects
on whales have been well studied, enabling a data-driven analysis of their
combined effects on survival rate (e.g., Fig. 6B). Therefore, two manage-
ment objectives could be envisioned for this case study: one defining a min-
imum consumption rate to ensure a favourable energy budget (and thus
reproductive rate), and another setting a minimum acceptable survival
rate. Survival and reproductive rates supporting a viable, recovering popu-
lation could then be derived using population modelling tools.

This alternative way of addressing multiple stressors is a form of adap-
tive management (Holling, 1978; Walters, 1986) (Fig. 7). In passive adap-
tive management, current scientific evidence is used to choose the policy
action most likely to bring the unit of interest closest to the management
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goals. In active adaptive management, the selection process also involves
considering what could be learned from its implementation (Williams,
2011). The effects of the implemented action are monitored to reduce un-
certainty and inform the next management round. This iterative process in-
corporates the best available evidence when making a decision under
uncertainty, but explicitly requires a re-evaluation once the policy measure
has been put in place and enforced. Adaptive management promotes data
collection and progressively leads to an improving evidence base. In the
context of multiple stressors, managers could use political judgments and
cost-benefit analyses (including the value of information that can be
gained, Bolam et al., 2019) to identify the set of stressors whose reduction
is predicted to achieve the management goal while balancing costs and so-
cietal values. It may also be possible to implement alternative manipula-
tions in different areas to compare their efficacy (Breitburg et al., 1998;
Wilson et al., 2006). The changes that result from these management ac-
tions would both refine the supporting analyses and inform the selection
of effective stressor combinations in other areas. To this purpose, adaptive
monitoring can be used to assess the effectiveness of adopted management
strategies (Côté et al., 2016; Lindenmayer and Likens, 2009).

5. Where along the spectrum should we model? Data limitations,
relevance for management and the role of mechanisms

While the assumption spectrum is conceptually appealing, it does not
provide practical guidance on whether or when a more data- or process-
driven approach should be preferred. We argue that choosing a position
along the spectrum in specific cases should be based on the objectives of
the potential management applications. Specifically, the guiding principle
should be a pragmatic assessment of the predictive power of the resulting
analysis in light of data availability and management priorities.

As discussed above, only the effects of a limited number of combina-
tions of doses for a selected set of stressors may be of management interest.
Ideally, experimental or observational studies can then be designed to de-
termine stressor responses over this range, and a data-driven analytical ap-
proach will be most effective, since it results in minimum bias while
supporting relevant predictions.

The pragmatic solution of targeting analytical approaches to combina-
tions of stressors and stressor levels of interest has been previously high-
lighted in toxicology, when assessing the effects of complex but defined
mixtures of compounds (Hernandez et al., 2019). Here, the effects of the



Fig. 7. The iterative framework to assess and manage the combined effect of multiple stressors on a unit of interest (e.g., a population). The definition of management goals
(i.e., the thresholds of adverse impacts) guides the identification of the priority set of stressors and stressor combinations that can bemanipulated. In turn, these priorities help
select the correct analytical approach along the assumption spectrum, in light of data availability. Analyses generate predictions of the combined effects of stressor reductions,
which inform appliedmanagement. The effects of implemented actions aremonitored, and themanagement strategy is re-evaluated as a result. Text in red along the left-hand
margin shows the equivalent terminology from the integrated ecosystem assessment framework proposed by Levin et al. (2009).
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Box 1
Challenges to the use of data-driven approaches for the study of combined
effects of multiple stressors.

1) Relevant data may not be available and designing suitable studies to inform the
combinations of interest may be challenging or unrealistic in practice. This is the
case for many populations of large animals that cannot be manipulated in the
laboratory, or that are already endangered (e.g., North Atlantic right whales,
Section 3).

2) The sequence of stressor addition or removal may be critical to determine
combined effects (Gunderson et al., 2016; Jackson et al., 2021). For example,
contaminants can compromise an individual's immune status and cause a
greater susceptibility to infectious diseases (Lafferty and Holt, 2003), but con-
taminant exposure must precede exposure to the pathogen for it to increase the
risk of acute infection.

3) The time intervals between stressor exposures might alter their combined
effects (Jackson et al., 2021; Orr et al., 2020).

4) Stressors can operate at distinct organisational levels, affecting different prox-
imate response variables (Segner et al., 2014; Simmons et al., 2021). Even
though there might be some common level at which a combined effect can be
measured, this shared response currency could be too far down the cascade of
effects (i.e., at higher organisational levels) to allow collection of relevant data
and efficient management. For example, if we only observe the combined
effects of disease and contaminants on individual survival, and if the unit of
interest is a population of a long-lived species, then experimental manipulation
is likely unfeasible and any effect would only be observed when it is too late to
intervene and reverse impacts (National Academies, 2017).

5) Combined effects may have opposite signs, or emerge at different time scales,
for distinct organisational levels (Orr et al., 2020; Segner et al., 2014). For
example, Lafferty and Holt (2003) discussed how exposure to a stressor might
enhance an individual's risk of contracting a disease; however, if the same
stressor also reduces the density of the host population, it might ultimately
restrict the ability of a specialist pathogen (i.e., infecting only that host) to
spread.

6) Exposure to some stressors may be transient, making dose-response relation-
ships difficult to assess, but the resulting health effects may be chronic or
permanent, potentially leaving individuals more vulnerable to other stressors.
In these cases, the dose of the first stressor may be unmeasurable, but the
resulting consequences on an individual's health are specific to that stressor
and its modulation of the effects of a second stressor can be measured (Ryan
et al., 2007). For example, exposure to chemical or biological toxins might
compromise the status of some organs, which in turn could affect an individ-
ual's ability to mount a physiological response or change its behaviour in
response to a disturbance source; e.g., compromised neurological or pulmo-
nary function might impair anti-predatory responses, leading to an increased
risk of being injured or killed by a predator or human activity (Smith et al.,
2017; Tablado and Jenni, 2017; Thomas et al., 2010). Different degrees of
organ compromise may be measurable, but the corresponding toxin doses that
caused them might not.

7) Real-world scenarios generally involve more than two stressors, all of which
may modify each other's effects in complex ways (Orr et al., 2020; Simmons
et al., 2021). For example, climate change is modifying the exposure rate and
intensity of many stressors simultaneously (e.g., Hooper et al., 2013), leading
to new, often unpredictable combinations of stressor levels that populations
experience (Doak et al., 2008). Rillig et al. (2021) and Simmons et al. (2021)
have proposed ways to classify stressors based on different criteria, which can
guide the assessment of combined effects.
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complete, environmentally realistic mixture can be tested directly (Feron
et al., 1998; Webster, 2018). More generally, the number of possible com-
binations of doses is often limited, with many combinations not occurring
and thus not requiring investigation (Carlin et al., 2013). Similarly, in ecol-
ogy, Boyd et al. (2018) advocated the identification of the most relevant
combinations and levels of key stressors in marine systems (which they
called ‘drivers’, see Appendix G), and presented practical solutions to the
challenges of designing and carrying out multi-stressor experiments for
quantifying their combined effects. Despite these considerations, there are
several challenges to using purely data-driven approaches (Box 1).

To tackle these complexities, a mechanistic understanding of the re-
sponse pathways is helpful. In extreme cases, this would make it possible
to completely bypass data collection. For example, when modelling the ef-
fects of climate change on a population of consumers, the future availability
and abundance of food resources may be unknown. However, a mechanis-
tic ecosystem model could still support reliable predictions based on the
connections between features of the abiotic environment and reverbera-
tions across trophic levels (Griffith et al., 2012; Simmons et al., 2021).
Mechanistic approaches should address structural uncertainty by compar-
ing the predictions of multiple, plausible functional forms, acknowledging
knowledge gaps explicitly, and re-evaluating assumptions whenever addi-
tional data become available (Milner-Gulland and Shea, 2017).

6. Conclusion: we need a coherent framework for the study of the
combined effects of multiple stressors across disciplines

Given rapid changes in the environment under the pressure of climate
change and encroachment of human activities on all ecosystems, various
authors (Paine et al., 1998; Rudd, 2014; Steffen et al., 2011) have argued
that understanding and managing combined effects of multiple stressors
is the most pressing challenge facing researchers, conservationists, man-
agers and policy makers in the 21st century. How best to quantify these ef-
fects has been debated across diverse disciplines. However, these debates
are frequently reduced to sensational claims of synergisms or detailed dis-
cussions of how to detect the occurrence of functional (as opposed to statis-
tical) interactions (Hertzberg and MacDonell, 2002), resulting in limited
ability to provide quantitative analyses for regulatory applications. It is par-
ticularly important that stakeholders across disciplines that have histori-
cally dealt with different sets of stressors operating along separate
response pathways find a shared language and methodology to facilitate
cross-fertilisation (Orr et al., 2020).

We show that existing, heterogeneous approaches for analysing multi-
ple stressor effects can be placed along an assumption spectrum, providing
a conceptual background that guides the selection of a suitable methodol-
ogy in different scenarios. We suggest that, in most cases, some reliance
on amechanistic description of the functional processes that underpin a sys-
tem will be necessary, as recognised in toxicology, environmental science
and ecology (Ankley et al., 2010; Griffen et al., 2016; Hernandez et al.,
2019; Hertzberg and MacDonell, 2002; Hooper et al., 2013; Schäfer and
Piggott, 2018). This mechanistic emphasis reflects a shared goal of
capturing complexity, ensuring realism, and, ultimately, enhancing predic-
tive power (Orr et al., 2020).

We also believe that management objectives should be central to this
discussion. Finding solutions to the risk incurred by target populations re-
quires identifying thresholds for adverse impact (Groffman et al., 2006;
Huggett, 2005; Kelly et al., 2015), estimating the probability that combined
effects of stressors may be nearing or exceeding those thresholds, and de-
ciding which stressors can be managed, in a practical combination that re-
duces the risk (National Academies, 2017) (Fig. 6). Focus on management
objectives also helps select the most effective approach along the assump-
tion spectrum on a case-by-case basis.

In conclusion, we have shown how cross-disciplinary methodological
differences can be reconciled by taking account of the goals and predictive
needs of the management scenario to which they are applied. The unified
view we propose can help conceptualise and structure the analysis of the
combined effects of multiple stressors and guide the development of
10
successful strategies that will ensure the future persistence of species and
ecosystems.
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