203 research outputs found

    Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin

    Get PDF
    Background: The gastrointestinal tract is the first target for the potentially harmful effects of mycotoxins after intake of mycotoxin contaminated food or feed. With deoxynivalenol (DON), T-2 toxin (T-2), fumonisin B1 (FB1) and zearalenone (ZEA) being important Fusarium toxins in the northern hemisphere, this study aimed to investigate in vitro the toxic effect of these mycotoxins on intestinal porcine epithelial cells derived from the jejunum (IPEC-J2 cells). Viability of IPEC-J2 cells as well as the proportion of apoptotic and necrotic IPEC-J2 cells was determined by flow cytometry after 72 h of exposure to the toxins. Correlatively, the integrity of the intestinal epithelial cell monolayer was studied using Transwell (R) inserts, in which the trans-epithelial electrical resistance (TEER) and passage of the antibiotics doxycycline and paromomycin were used as endpoints. Results: We demonstrated that the percentage of Annexin-V-FITC and PI negative (viable) cells, Annexin-V-FITC positive and PI negative (apoptotic) cells and Annexin-V-FITC and PI positive (necrotic) IPEC-J2 cells showed a mycotoxin concentration-dependent relationship with T-2 toxin being the most toxic. Moreover, the ratio between Annexin-V-FITC positive and PI negative cells and Annexin-V-FITC and PI positive cells varied depending on the type of toxin. More Annexin-V-FITC and PI positive cells could be found after treatment with T-2 toxin, while more Annexin-V-FITC positive and PI negative cells were found after exposure to DON. Consistent with the cytotoxicity results, both DON and T-2 decreased TEER and increased cellular permeability to doxycycline and paromomycin in a time-and concentration-dependent manner. Conclusions: It was concluded that Fusarium mycotoxins may severely disturb the intestinal epithelial barrier and promote passage of antibiotics

    A new subunit vaccine based on nucleoprotein nanoparticles confers partial clinical and virological protection in calves against bovine respiratory syncytial virus

    Get PDF
    Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, worldwide prevalent viruses that are the leading cause of severe airway disease in children and calves, respectively. Efficacy of commercial bovine vaccines needs improvement and no human vaccine is licensed yet. We reported that nasal vaccination with the HRSV nucleoprotein produced as recombinant ringshaped nanoparticles (NSRS) protects mice against a viral challenge with HRSV. The aim of this work was to evaluate this new vaccine that uses a conserved viral antigen, in calves, natural hosts for BRSV. Calves, free of colostral or natural anti-BRSV antibodies, were vaccinated with NSRS either intramuscularly, or both intramuscularly and intranasally using MontanideTM ISA71 and IMS4132 as adjuvants and challenged with BRSV. All vaccinated calves developed anti-N antibodies in blood and nasal secretions and N-specific cellular immunity in local lymph nodes. Clinical monitoring post-challenge demonstrated moderate respiratory pathology with local lung tissue consolidations for the non vaccinated calves that were significantly reduced in the vaccinated calves. Vaccinated calves had lower viral loads than the nonvaccinated control calves. Thus NSRS vaccination in calves provided cross-protective immunity against BRSV infection without adverse inflammatory reaction

    Micelle formation, gelation and phase separation of amphiphilic multiblock copolymers

    Full text link
    The phase behaviour of amphiphilic multiblock copolymers with a large number of blocks in semidilute solutions is studied by lattice Monte Carlo simulations. The influence on the resulting structures of the concentration, the solvent quality and the ratio of hydrophobic to hydrophilic monomers in the chains has been assessed explicitely. Several distinct regimes are put in evidence. For poorly substituted (mainly hydrophilic) copolymers formation of micelles is observed, either isolated or connected by the hydrophilic moieties, depending on concentration and chain length. For more highly substituted chains larger tubular hydrophobic structures appear which, at higher concentration, join to form extended hydrophobic cores. For both substitution ratios gelation is observed, but with a very different gel network structure. For the poorly substituted chains the gel consists of micelles cross-linked by hydrophilic blocks whereas for the highly substituted copolymers the extended hydrophobic cores form the gelling network. The interplay between gelation and phase separation clearly appears in the phase diagram. In particular, for poorly substituted copolymers and in a narrow concentration range, we observe a sol-gel transition followed by an inverse gel-sol transition when increasing the interaction energy. The simulation results are discussed in the context of the experimentally observed phase properties of methylcellulose, a hydrophobically substituted polysaccharide.Comment: 14 pages, 14 figures; Soft Matter (2011

    Innovative approach for transcriptomic analysis of obligate intracellular pathogen: selective capture of transcribed sequences of Ehrlichia ruminantium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model <it>Ehrlichia ruminantium (ER</it>), the causative agent of heartwater, is transmitted by tick <it>Amblyomma variegatum</it>. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood.</p> <p>Results</p> <p>We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales <it>ER </it>to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of <it>ER</it>'s cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome <it>ER </it>microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from <it>ER </it>microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R<sup>2 </sup>= 0.7). Moreover, SCOTS method is crucial for microarrays analysis of <it>ER</it>, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively.</p> <p>Conclusions</p> <p>We conclude that this SCOTS method has a key importance for the transcriptomic analysis of <it>ER </it>and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both <it>ER </it>pathogenicity and the adaptation of obligate intracellular bacteria to their environment.</p

    A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium

    Get PDF
    Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth

    Sphingomyelin Synthase 1 (SMS1) Downregulation Is Associated With Sphingolipid Reprogramming and a Worse Prognosis in Melanoma

    Get PDF
    Sphingolipid (SL) metabolism alterations have been frequently reported in cancer including in melanoma, a bad-prognosis skin cancer. In normal cells, de novo synthesized ceramide is mainly converted to sphingomyelin (SM), the most abundant SL, by sphingomyelin synthase 1 (SMS1) and, albeit to a lesser extent, SMS2, encoded by the SGMS1 and SGMS2 genes, respectively. Alternatively, ceramide can be converted to glucosylceramide (GlcCer) by the GlcCer synthase (GCS), encoded by the UGCG gene. Herein, we provide evidence for the first time that SMS1 is frequently downregulated in various solid cancers, more particularly in melanoma. Accordingly, various human melanoma cells displayed a SL metabolism signature associated with (i) a robust and a low expression of UGCG and SGMS1/2, respectively, (ii) higher in situ enzyme activity of GCS than SMS, and (iii) higher intracellular levels of GlcCer than SM. SMS1 was expressed at low levels in most of the human melanoma biopsies. In addition, several mutations and increased CpG island methylation in the SGMS1 gene were identified that likely affect SMS1 expression. Finally, low SMS1 expression was associated with a worse prognosis in metastatic melanoma patients. Collectively, our study indicates that SMS1 downregulation in melanoma enhances GlcCer synthesis, triggering an imbalance in the SM/GlcCer homeostasis, which likely contributes to melanoma progression. Evaluating SMS1 expression level in tumor samples might serve as a biomarker to predict clinical outcome in advanced melanoma patients

    Structural Basis for the Regulation Mechanism of the Tyrosine Kinase CapB from Staphylococcus aureus

    Get PDF
    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function

    Fast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing

    Get PDF
    Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish
    corecore