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Sphingolipid (SL) metabolism alterations have been frequently reported in cancer
including in melanoma, a bad-prognosis skin cancer. In normal cells, de novo
synthesized ceramide is mainly converted to sphingomyelin (SM), the most abundant
SL, by sphingomyelin synthase 1 (SMS1) and, albeit to a lesser extent, SMS2,
encoded by the SGMS1 and SGMS2 genes, respectively. Alternatively, ceramide can
be converted to glucosylceramide (GlcCer) by the GlcCer synthase (GCS), encoded by
the UGCG gene. Herein, we provide evidence for the first time that SMS1 is frequently
downregulated in various solid cancers, more particularly in melanoma. Accordingly,
various human melanoma cells displayed a SL metabolism signature associated with (i)
a robust and a low expression of UGCG and SGMS1/2, respectively, (ii) higher in situ
enzyme activity of GCS than SMS, and (iii) higher intracellular levels of GlcCer than
SM. SMS1 was expressed at low levels in most of the human melanoma biopsies. In
addition, several mutations and increased CpG island methylation in the SGMS1 gene
were identified that likely affect SMS1 expression. Finally, low SMS1 expression was
associated with a worse prognosis in metastatic melanoma patients. Collectively, our
study indicates that SMS1 downregulation in melanoma enhances GlcCer synthesis,
triggering an imbalance in the SM/GlcCer homeostasis, which likely contributes to
melanoma progression. Evaluating SMS1 expression level in tumor samples might serve
as a biomarker to predict clinical outcome in advanced melanoma patients.
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INTRODUCTION

Melanoma is the most dangerous and deadliest form of skin cancers. Despite emerging targeted
therapies and immunotherapies, most of the patients do not respond optimally, and/or develop
acquired resistance (Eroglu and Ribas, 2016; Sharma et al., 2017).

Sphingolipids (SL) are bioactive molecules that play key roles in plasma membrane homeostasis
and dynamics as well as in many cellular processes including cell death and proliferation as
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well as cancer progression (Hannun, 1996; Hannun and Obeid,
2002; Ogretmen and Hannun, 2004; Segui et al., 2006). In
melanoma, numerous studies have documented alterations in SL
metabolism (Colie et al., 2009; Sorli et al., 2013; Albinet et al.,
2014; Mrad et al., 2016; Leclerc et al., 2018). Glucosylceramide
synthase (GCS), which converts ceramide to glucosylceramide
(GlcCer), is involved in melanoma progression in mice (Deng
et al., 2002; Weiss et al., 2003). To the best of our knowledge,
sphingomyelin synthases SMS1 and SMS2 (encoded by the
SGMS1 and SGMS2 genes), which metabolize ceramide into
sphingomyelin (SM) (Huitema et al., 2004; Yamaoka et al., 2004),
the most abundant SL in mammalian cells (Lafont et al., 2010),
have not been analyzed in melanoma.

Herein, we show that SMS1 downregulation (i)
occurs frequently in melanoma, (ii) is associated with SL
reprogramming, and (iii) constitutes a worse prognosis
biomarker in metastatic melanoma.

MATERIALS AND METHODS

Macroarray Experiment
Cancer Profiling array II (#631777) including patient-derived
cDNA tumor and non-tumor samples was purchased from
BD Biosciences Clontech. Human samples were collected in
accordance with all applicable laws and regulations in an ethical
manner. Membrane was successively hybridized according to the
manufacturer’s instructions with SMS1 and ubiquitin 32P-labeled
probes generated using a random nonamer primer labeling
procedure (# RPN1604, Amersham Biosciences). The membrane
was exposed to an intensifying screen that was developed using
PhosphorImager and Image Quant software.

SGMS1, SGMS2, and UGCG Expression
and Mutations in Human Melanoma
SGMS1, SGMS2, and UGCG expression was evaluated from
Oncomine database (Haqq et al., 2005; Talantov et al., 2005; Riker
et al., 2008) and the cancer genome atlas (TCGA) melanoma
(Cancer Genome Atlas Network, 2015). TCGA genomic and
clinical data were downloaded from the UCSC cancer genome
browser project1. The analysis population consisted of 342
patients with distant metastasis for whom RNAseq and clinical
data overlap. All survival times were calculated from the date
of specimen procurement and were estimated by the Kaplan
Meier method with 95% confidence intervals (CI). Univariates
analyses were performed using Cox proportional hazards model.
Alternatively, SGMS1, SGMS2, and UGCG mutation analyses in
human melanoma were assessed on cBioportal2 (Cerami et al.,
2012; Gao et al., 2013).

SGMS1 Methylation Analysis
The correlation between SGMS1 expression and methylation
status of SGMS1 CpGs in metastatic patient samples was analyzed
using the TCGA melanoma RNA-seq and DNA methylation

1https://genome-cancer.ucsc.edu
2http://www.cbioportal.org/

Illumina datasets. For each analyzed CpG, the rho values,
indicating the Spearman’s rank correlation coefficients between
the CpG methylation and the SGMS1 expression, are reported.
The organization of the SGMS1 locus is depicted in Figure 2A as
previously described (Vladychenskaya et al., 2004).

Melanoma Cell Lines
Human melanoma cell lines (M249, SKMEL28, A375, WM9,
WM35, WM115, WM266, WM793, WM1346, COLO829, and
G361) were from ATCC or Wistar institute.

Determination of in situ SMS and
GCS Activities
1 × 106 melanoma cells were incubated with 2.5 µM C6-NBD-
ceramide (Sigma) solubilized in ethanol and SMS and GCS
activities were measured as previously described (Lafont et al.,
2010; Bilal et al., 2017a).

Analysis of Sphingolipids
Sphingolipids were analyzed from 1.106 melanoma cells by liquid
chromatography/mass spectrometry (LC/MS) as previously
described (Bilal et al., 2017b).

qRT-PCR Analysis
Total RNA was reverse-transcribed using 1 µg of input RNA
and random primers (SuperScript II, Invitrogen). qRT-PCR
reactions were performed in duplicate on StepOne apparatus
(Applied Biosystems) using SYBR Green (QuantiTect, Qiagen)
as fluorescent detection dye. Results were quantified and mRNA
expression for each target gene (UGCG, SGMS1, or SGMS2)
was determined by normalization to reference genes (β-actin
and GAPDH) using the 1Ct method. Primers for UGCG and
reference genes were from Qiagen. Primers for SGMS1 and
SGMS2 were from Sigma (Lafont et al., 2010).

Statistics and Reproducibility
Statistical significance of differences between groups was
evaluated using the Graph-Pad Prism 7 software. For multiple
comparisons, an Anova test was used. Wilcoxon test was used
in Figure 1B. Differences were considered to be statistically
significant when p < 0.05 (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

RESULTS

SMS1 Downregulation in Melanoma Is
Associated With SL Metabolism
Reprogramming
We initially performed a macroarray to evaluate the expression
of SMS1 in matched tumor and non-tumor samples from the
same patients (Figure 1A). The data analysis with a threshold
of 1.5 showed that, whereas SMS1 was up-regulated in 11% of
tumor samples, it was down-regulated in 46% of tumor samples
(Supplementary Table 1). As a matter of fact, SMS1 was most
frequently down-regulated in vulva (5 out of 5), testis (9 out
of 10), and skin (9 out of 10) cancers, including melanoma (6
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FIGURE 1 | Sphingomyelin synthase 1 (SMS1) is frequently downregulated in melanoma. (A) cDNA samples isolated from normal (N) and tumor (T) tissues from the
same patient were compared. Expression of SGMS1 (left panel) and ubiquitin (right panel). (B) The SGMS1 expression was normalized to ubiquitin and expressed for
each pair in normal skin and melanoma samples. (C) SGMS1 expression was analyzed in 3 different cohorts from Oncomine in normal Skin (n = 4), primary (PM;
n = 14), and metastatic (MM; n = 39) melanoma (Ricker’s cohort) (left panel); in nevus (n = 9), primary (PM; n = 6), and metastatic (MM; n = 19) melanoma (Haqq’s
cohort) (middle panel); in nevus (n = 18) and primary melanoma (PM; n = 45) (Talantov’s cohort) (right panel). (D) The expression of SGMS1 was analyzed in various
cancer type cohorts from cbioportal. (E) The expression of UGCG, SGMS1, and SGMS2 was analyzed in melanoma samples from the TCGA metastatic melanoma
patients (n = 342). (F) A set of melanoma cell lines (n = 10) was analyzed for the expression of UGCG, SGMS1, and SGMS2 by RT-qPCR (n = 10). Data from at least
two independent experiments are means ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗p < 0.0001.
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out of 7) (Figure 1B and Supplementary Table 1). Accordingly,
our transcriptomic analysis in 3 different cohorts from published
database indicates that SGMS1 was downregulated in primary
and metastatic human melanoma as compared to normal skin
and nevus (Figure 1C; Haqq et al., 2005; Talantov et al.,
2005; Riker et al., 2008). In contrast, the expression of SGMS2
and UGCG, encoding SMS2 and GCS, respectively, remained
unchanged (Supplementary Figure 1A). We next evaluated the
expression of SGMS1 in various cancer types from the TCGA
database. Strikingly, melanoma exhibited the lowest expression
of SGMS1 (Figure 1D). Moreover, melanoma expressed SGMS2
at rather low levels, while expressing UGCG at high levels
(Supplementary Figure 1B). In metastatic melanoma from the
TCGA, the expression of UGCG was significantly higher than

that of SGMS1 and SGMS2 (Figure 1E). Accordingly, melanoma
cells exhibited low SGMS1 and SGMS2 expression, while they
expressed UGCG at higher levels (Figure 1F).

We next evaluated the SL metabolism signature in human
melanoma cell lines. Whereas four melanoma cell lines
exhibited a higher proportion of SM, six were enriched in
GlcCer (Figure 2A). Accordingly, in situ enzyme activity was
significantly higher for GCS than for SMS in the cell lines
with high GlcCer proportion only (Figure 2B). Consequently,
endogenous intracellular levels of GlcCer were greater than SM
and other SL species as evaluated by mass spectrometry for those
six melanoma cell lines (Figure 2A and Supplementary Table 2).
Of note, neither the mutation status (Bairoch, 2018) nor the
origin of the melanoma cell lines (i.e., from radial or vertical

FIGURE 2 | Sphingomyelin synthase 1 downregulation is associated with a worse prognosis in advanced melanoma patients. (A,B) A set of melanoma cell lines
(n = 10) was analyzed for SLs by mass spectrometry (A) and GCS and SMS enzyme activities (B). Data from one experiment representative of three independent
experiments are means ± SEM. (C) SGMS1 expression in melanoma samples from the TCGA melanoma cohort (n = 342) (left panel) and overall survival of patients
exhibiting low (n = 68), medium (n = 206), and high (n = 68) SGMS1 expression (right panel). Cox model: SGMS1low (Reference), SGMS1medium: HR = 0.62 [95%
CI = 0.44; 0.88] p = 0.007; SGMS1high: HR = 0.48 [95% CI 0.31; 0.76] p = 0.002. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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growth phase or metastasis) were associated with a specific SL
signature (Supplementary Table 3).

SMS1 Downregulation in Human
Melanoma Is Associated With a
Worse Prognosis
To get insight into the molecular mechanisms that may
account for SMS1 downregulation and/or inhibition of enzyme
activity, we evaluated SGMS1 mutation and methylation status
in the public databases of melanoma. Whereas SGMS2 and
UGCG were mutated with low frequency, SGMS1 exhibited a
higher mutation rate in the coding sequence (Supplementary
Figure 2). Most of the mutations were missense mutations
and some of them affected residues in the catalytic domain
(Supplementary Figure 2 and Supplementary Table 4). In the
TCGA melanoma cohort, 7.7% of the 287 sequenced samples
were mutated (16 missense mutations, 2 non-sense mutations
and 4 deep deletions). One of the non-sense mutations (W309∗)
was also found in one specimen from another melanoma
cohort (Supplementary Table 4). The other non-sense mutation
(R387∗) was also found in colorectal carcinoma, sarcoma and
uterus carcinoma (data not shown).

To delineate the effect of DNA methylation on the
regulation of SGMS1 expression, we analyzed the TCGA
metastatic melanomas. Among the 50 SGMS1 Illumina 450K
probes with workable data, the DNA methylation level of
33 probes displayed a significant correlation with expression.
Ten probes out of the 14 located in the CpG island 1
and its shores, as well as 3 out of the 3 in the CpG
island 2 and its shores, both containing putative promoter
sequences, were inversely correlated with the expression level.
In contrast, 13 CpG out of the 16 located outside CpG
islands and shores were positively correlated with the expression
(Supplementary Figures 3A,B). Thus, hypermethylation of
CpG islands and hypomethylation events in open sea were
significantly associated with the decrease in SGMS1 expression,
indicating the regulation of SMS1 expression in metastatic
melanoma might rely, at least partly, on DNA methylation of the
SGMS1 locus.

Finally, the clinical outcome in metastatic melanoma patients
exhibiting low (20th percentile, medium (between the 20th
and 80th percentile), high (80th percentile) SGMS1, SGMS2,
and UGCG expression was analyzed in the TCGA cohort.
Whereas UGCG and SGMS2 expression did not impact
on overall survival (Supplementary Figure 4), low SGMS1
expression was statistically associated with shortened overall
survival (Figure 2C).

Collectively, our data indicate that melanoma exhibit
a SL metabolism reprogramming associated with SMS1
downregulation, which constitutes a worse-prognosis biomarker.

DISCUSSION

Herein, we provide evidence for the first time that melanoma
exhibit SL metabolism changes associated with SMS1 down-
regulation, not only decreasing SM synthesis but also

promoting the synthesis of GlcCer, which facilitates tumor
progression in mouse melanoma models (Deng et al., 2002;
Weiss et al., 2003). Interestingly, a recent study indicates
the formation of an heterocomplex between SMS1 and
GCS in mammalian cells, which enhances and reduces
SM, and GlcCer synthesis, respectively (Hayashi et al.,
2018). SMS1 downregulation may limit the formation of
such a complex, promoting GlcCer synthesis in melanoma.
Since de novo synthesized ceramide is the substrate of
both SMS1 and GCS in the Golgi, downregulation of
SMS1 likely increases the ceramide pool available for GCS
to produce GlcCer.

Strikingly, low SMS1 expression is associated with a worse
prognosis in metastatic melanoma, suggesting that reduced
SM synthesis likely contributes to melanoma progression.
SMS1 down-regulation, which occurs in primary melanoma,
is likely an early event in melanomagenesis. Several mutations
affecting the coding sequence of SGMS1 probably contribute
to the decreased SMS1 expression. In the TCGA melanoma
cohort, 5 out of 16 missense mutations and 1 non-sense
mutation were associated with shallow deletions. Moreover,
4 deep deletions were identified as well as 17 CpG located
on the two CpG islands and their shores, the methylation
of which was correlated with SGMS1 downregulation in
metastatic melanoma. SMS1 expression and activity are
likely regulated by translational and post-translational
mechanisms such as recently described in Bcr-Abl-expressing
leukemia cells (Moorthi et al., 2018). Whereas key driver
mutations have been identified in melanoma (Hodis et al.,
2012), we found no correlation between mutation status
and SL signature.

Ceramide clearance catalysed by GCS plays a role in
multidrug resistance of cancer cell lines (Lavie et al., 1997; Liu
et al., 2004; Sun et al., 2006; Liu et al., 2010). However, our
team provided genetic evidence that GCS is unlikely a critical
enzyme to confer melanoma resistance to chemotherapy in a
mouse melanoma model (Veldman et al., 2003). Because SLs
are key components of the plasma membrane, modulating
various signaling pathways (Hannun, 1996; Hannun and
Obeid, 2002), future experiments will address whether
or not SM/GlcCer homeostasis alterations in melanoma
impair the efficacy of emerging therapies such as targeted
therapies and immunotherapies. Finally, it remains to evaluate
whether low SMS1 expression in melanoma samples is a
valuable biomarker to predict the resistance of patients to
emerging therapies.
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