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a b s t r a c t

Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, worldwide

prevalent viruses that are the leading cause of severe airway disease in children and calves, respec-

tively. Efficacy of commercial bovine vaccines needs improvement and no human vaccine is licensed

yet. We reported that nasal vaccination with the HRSV nucleoprotein produced as recombinant ring-

shaped nanoparticles (NSRS) protects mice against a viral challenge with HRSV. The aim of this work

was to evaluate this new vaccine that uses a conserved viral antigen, in calves, natural hosts for BRSV.

Calves, free of colostral or natural anti-BRSV antibodies, were vaccinated with NSRS either intramuscu-

larly, or both intramuscularly and intranasally using MontanideTM ISA71 and IMS4132 as adjuvants and

challenged with BRSV. All vaccinated calves developed anti-N antibodies in blood and nasal secretions

and N-specific cellular immunity in local lymph nodes. Clinical monitoring post-challenge demonstrated

moderate respiratory pathology with local lung tissue consolidations for the non-vaccinated calves that

were significantly reduced in the vaccinated calves. Vaccinated calves had lower viral loads than the non-

vaccinated control calves. Thus NSRS vaccination in calves provided cross-protective immunity against

BRSV infection without adverse inflammatory reaction.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Human and bovine respiratory syncytial viruses (HRSV and

BRSV) are two closely related, highly infectious, worldwide preva-

lent viruses that are the leading cause of acute lower respiratory

tract disease in children and calves, respectively [1]. RSV is a nega-

tive strand RNA virus that belongs to the Pneumovirus genus within

the Paramyxoviridae family. The frequency and seriousness of BRSV

diseases are regarded as the principal health problem in calf rearing

worldwide and are responsible for large economic losses in dairy

and beef farming. The frequency of BRSV infections is very high

in cattle less than 1-year-old and the virus may be responsible for

∗ Corresponding author. Tel.: +33 1 34 65 26 20; fax: +33 1 34 65 26 21.

E-mail address: sabine.riffault@jouy.inra.fr (S. Riffault).
1 Contributed equally to the work.

more than 60% of the epizootic respiratory diseases observed in

dairy herds and up to 70% in beef herds [2]. Mortality caused by

BRSV infections ranges generally between 0.5% and 3% but can reach

up to 20% in some outbreaks [3]. The control of BRSV infections is a

high priority for animal health and farming organizations, not only

for economic reasons, but also due to the impact on animal welfare.

Several commercial BRSV vaccines, including modified-live virus

and inactivated single fraction are available for use in cattle. Their

efficacy needs improvement in terms of duration of protection, clin-

ical and virological protection. Even though the commercial bovine

vaccines probably have reduced the prevalence of infection, BRSV

continues to circulate in cattle populations.

No commercial vaccine is available against HRSV, a pathogen

of major importance in infants. HRSV induced-bronchiolitis is the

most common cause of infant hospitalization in industrialized

countries and is a suspected risk factor of recurrent wheeze and

asthma in later life [4]. The main reason for the lack of human

0264-410X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.vaccine.2010.03.008
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vaccine is the dramatic failure in the late sixties of a formalin

inactivated HRSV vaccine that not only failed to protect against sub-

sequent infection but also induced exacerbated disease in children

[5]. Vaccine augmented disease has also been described in calves

and some commercial BRSV vaccines were withdrawn from the

market for that reason [6,7]. Other obstacles to vaccination exist,

such as the need to immunize immunologically immature young

infants and the presence of maternal antibodies that can have a

strong suppressive effect on the outcome of vaccination, both in

animals and humans.

Experimental models in rodents have been developed to find out

the immune correlates of protection versus disease exacerbation

and help the conception of safe RSV vaccines. Altogether these stud-

ies highlight the delicate tuning between cytotoxic anti-viral CD8

T cells and RSV-specific antibodies, which, although generally pro-

tective against RSV infection, may both have deleterious effect [8].

For instance, poorly neutralizing antibodies with low avidity for the

protective RSV epitopes can lead to enhanced respiratory syncytial

virus disease [9]. The RSV-F and G glycoproteins, which are situated

at the surface of the virions, are the targets of neutralizing antibod-

ies. Research on HRSV subunit vaccines has essentially focused on

these two proteins, by using chimeric FG glycoprotein, full-length F

proteins or a recombinant protein containing the central antigenic

domain of the HRSV G protein fused to the C-terminal end of the

albumin-binding domain of the streptococcal G protein [10]. How-

ever, recombinant G and F or chimeric FG were often found to cause

enhancement of lung pathology upon RSV challenge, in association

with the priming of Th2 cells [1,11].

In addition to the risk of disease exacerbation by vaccination,

another critical issue for human or bovine RSV vaccination is the

variability of the viral isolates circulating worldwide. An effec-

tive bovine or human vaccine should protect against all of them.

The nucleoprotein (N) that covers the viral RNA genome, form-

ing the viral nucleocapsid, is the most conserved of RSV proteins

and is a major target of the cellular immune response against RSV

[12–14]. Thus, contrary to F or G antigens, N based vaccines offer the

possibility of T-cell-mediated cross-protective immunity against

circulating RSV. Strategies aimed at using N in a vaccine to stimulate

T cell immunity have focused on live-attenuated virus vector and on

DNA vaccine. Vaccination of mice with recombinant vaccinia virus

encoding the HRSV N protein induced partial protection [15,16].

Similarly, immunization of young calves with a recombinant vac-

cinia virus expressing the BRSV N protein induced non-neutralizing

antibodies and primed BRSV-specific proliferative T response and

IFN-� production that resulted in reduction of viral replication in

the upper and lower respiratory tract [17]. DNA immunization by

two administrations of plasmids encoding BRSV-F and N proteins

primed a strong cell-mediated immunity in calves, which drasti-

cally reduced viral replication, clinical signs and pulmonary lesions

after a highly virulent challenge [18]. More recently a nucleocapsid-

based DNA prime–protein boost vaccination was shown to confer

protection against BRSV replication and lung pathology [19].

Compared to DNA, or live-attenuated vector vaccines, subunit

vaccines are safer because they do not present the risk of replica-

tion/integration of genetically modified material. However subunit

vaccines using the nucleoprotein (N) have been poorly investi-

gated, in part because a recombinant N was difficult to produce

as a soluble protein. We have set up an original technology to

engineer circular nanoparticles composed of 10–11 recombinant

N [20], the 3D structures of which have just been solved [21]. These

nanoparticles are named NSRS for sub-nucleocapsid ring structures

[20]. Intranasal vaccination of mice with HRSV NSRS nanoparticles

primes N-specific CD4 and CD8 T cells and significantly reduces

titers of RSV in the lungs of mice following HRSV challenge with-

out signs of disease exacerbation [22]. One major limit of the mouse

model is the absence of respiratory disease in response to RSV infec-

tion. Therefore the objectives of the present study were to evaluate

the potency of NSRS as a vaccine in calves that are the natural host

for BRSV and that display clinical respiratory symptoms and lung

lesions upon infection. Because the N amino acid sequence is highly

conserved between bovine and human RSV strains (≈94% amino

acid identity), we took it as an opportunity to test whether NSRS

from HRSV strain Long would provide cross-protective immunity

against viral challenge with a BRSV strain. The data presented in this

study showed that vaccination with the nano-rings NSRS partially

protected against both respiratory disease and virus replication

upon BRSV challenge without signs of vaccine-mediated disease

exacerbation.

2. Materials and methods

2.1. Plasmid constructions

The pGEX-PCT (coding for residues 161–241 of the C-terminal

fragment of the phosphoprotein, named PCT, fused to glutathione-

S-transferase) and pET-N plasmids which contain sequences from

the HRSV Long strain have been described previously [20]. Random-

primed cDNA synthesis was done using SuperscriptII (GIBCO,

Invitrogen Life Science, France) and 1 �g of total cytoplasmic RNA

isolated from bovine Turbinate cells infected with the A2Gelfi strain

of BRSV [23,24]. The cDNAs were amplified by PCR with high

fidelity PfuTurbo Polymerase (5U, Stratagene, Agilent Technologies,

France) and 100 ng of the following primers:

N-A2G+: 5′-GAGGAGCCATGGCTCTTAGCAAGGTCAAACTAAATG-

3′;
N-A2G−: 5′-GAGGAGCTCGAGTCACAATTCCACATCATTATCTTTGG-

3′;
P-A2G+: 5′-GAGGGATCCATGGCTGCTCGTGATGGTATAAGAGATG-

CCATG-3′;
P-A2G−: 5′-GAGGAGCTCGAGTCAGAAATCTTCAAGTGATAGATCA-

TTGTC-3′.

The amplified full-length cDNA coding for BRSV N protein was

digested subsequently by NcoI and XhoI and cloned into pET-28a(+)

vector (Novagen, Merck Chemicals products, Germany). The PCT

coding for amino acid residues 161–241 of BRSV P protein was

digested subsequently by BamHI and XhoI and inserted into the

pGEX-4T3 expression vector (Pharmacia, France). Constructs were

verified by sequencing.

2.2. Expression and purification of recombinant HRSV and BRSV

proteins from E. coli

E. coli BL21(DE3) (Novagen, Merck Chemicals products, Ger-

many) cells were co-transformed with the pGEX-PCT and pET-N

plasmids coding for either BRSV or HRSV proteins. Recombinant

protein expression was induced by IPTG and proteins were puri-

fied by glutathione–Sepharose affinity (Pharmacia, France). HRSV

N + PCT complexes were separated from glutathione–Sepharose

beads by biotinylated-thrombin cleavage in Tris 10 mM pH 8.5,

NaCl 140 mM and thrombin was removed by the Thrombin Cleav-

age Capture kit according to manufacturer’s instructions (Novagen,

Merck Chemicals products, Germany). This protocol allows the

purification of recombinant HRSV N proteins via their capacity to

interact with the C-terminal fragment of P fused to GST (named

GST-PCT) as previously described [20]. According to this procedure,

10 to 11 N proteins assemble into ring-shaped structures containing

RNA subsequently named NSRS for sub-nucleocapsid ring struc-

tures [20]. Two hundred and fifty milligrams of HRSV NSRS were

produced.
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2.3. Adjuvant and vaccine formulation

For i.m. injection, NSRS was formulated in MontanideTM ISA71

VG (SEPPIC, Air Liquide, France) at a final concentration of 1 mg/ml.

MontanideTM ISA 71 VG is a blend of oil and an ester from mannitol

sugar and oleic fatty acid (anhydromannitol octadecenoate ether)

with specific emulsifying properties due to its sugar polar head, its

non-ionicity and the specificity of fatty acid chains of the surfactant

system. The oleic acid and the sugar polar part used are from a

vegetable origin. Experimental small scale vaccine emulsion was

performed using silverson L4RT with tubular system mixer. The

ratio of MontanideTM 71 VG/aqueous phase was 7 g of adjuvant/3 g

antigenic phase. MontanideTM 71 VG was added first in a beaker

and the head of the silverson was placed in the oil with agitation

at 1000 rpm. The appropriate amount of antigenic phase (at the

same temperature than the MontanideTM 71 VG) was then added

progressively, and the rotation speed was increased to 5000 rpm for

3 min, with gentle moving of the beaker. To control that NSRS were

not denatured in emulsion with MontanideTM ISA71 VG, 0.1 ml of

butanol was added to 1 ml of emulsion, resulting in separation of

aqueous and organic phases. Proteins present in the aqueous phase

were dosed and imaged by negative-stain microscopy with a Philips

CM12 microscope operated at an accelerating voltage of 120 kV.

For i.n. administration, NSRS was formulated in 25% (V/V)

MontanideTM IMS 4132 VG (SEPPIC, Air Liquide, France) at a final

concentration of 5 mg/ml. MontanideTM IMS 4132 VG is a ready

to dilute water-soluble vaccine adjuvant. MontanideTM IMS are

an association of apolar amphiphile nanoparticles combined with

a soluble immunostimulant. All raw materials used in this for-

mulation have monographs in different pharmacopeia and/or are

already used in injectables for human. This adjuvant has been

specifically selected for the intranasal trial due to its high spread-

ability. Experimental vaccine formulation was done by a simple

dilution of the antigenic media in the adjuvant under gentle mag-

netic steering.

2.4. Virus and inoculum preparation

BRSV isolate 3761 (BRSV-3761) was isolated from a nasal swab

of a calf with distress respiratory syndrome in 2003 [1]. The virus

was then replicated for five passages in Bovine Turbinate cells

(American Type Culture Collection, CRL 1390) and was amplified by

3 passages in newborn calves to give the BRSV-3761 inoculum. Pas-

sages in newborn calves were performed as follows: a 2-days-old

calf, deprived of colostrum and maternal antibodies, was inoculated

by intranasal and intratracheal routes with 106 PFU of BRSV-3761.

Calf was euthanized under anesthesia 5 days later and broncho-

alveolar lavage (BAL) was performed in the lung with 500 ml

of MEM medium supplemented with enrofloxacin (0.02 �g/ml,

Baytril 5%, Bayer, France) and fungizone (2.5 �g/ml, Invitrogen Life

Science, France). This BAL was snap frozen at −180 ◦C. The same

method was used to obtain and store BAL at the second and third

passages. The challenge inoculum of the present study consisted of

the BAL at the third passage and was free of the following bovine

respiratory pathogens: Mannheimia haemolytica, Pasteurella multo-

cida, Mycoplasma bovis, Bovine Viral diarrhea virus (BVDV), bovine

parainfluenza type 3, bovine Adenovirus 3, bovine coronavirus,

and bovine herpesvirus 1. The titre of the challenge inoculum was

5 × 103 PFU/ml. Infectivity of the inoculum was controlled after

challenge (3.8 × 103 PFU/ml, when tested 6 h after experimental

infection).

2.5. Experimental design (Table 1)

Twenty-four Normandy × Holstein breed male calves were

selected at birth, reared in isolation unit (A2 level of bio safety, INRA

Experimental Platform of Infectiology, Nouzilly, France) from birth

to euthanasia and allocated to specific units, according to experi-

mental groups. Animals were housed in biocontainment facilities as

prescribed by the guidelines of the European Community Council

on Animal Care (86/609/CEE) and under the authority of licence

issued by the Direction des Services Vétérinaires (accreditation

number 31–234). Calves were colostrum deprived until 3 days

after birth and then received a substitute of colostrum (CER Mar-

loie, Belgium) by oral route for 4 days to protect them against

enteritic pathogens. They were fed with commercial milk for first

age (Sanders Ouest SAS, Champagne, France). Antibiotics (1 mg/kg

cefquinome, Cobactan, Scherring-Plough Intervet, France) were

administrated from birth to 7 days. Absence of maternal antibod-

ies against BRSV was confirmed by IgG detection (indirect BRSV

ELISA, LSI, Lissieu, France) in blood of calves at 7 days after birth.

BRSV ELISA was also performed each week before inoculation, to

rule out natural BRSV infection during rearing. Absence of BVDV in

calves was assessed at birth and one week before challenge by neg-

ative detection of the BVDV p80-125 antigen (Serelisa BVDV-BD,

Synbiotics, Lyon, France) and by negative RT-PCR [25]. All calves

remained healthy during the 3-month period before challenge. At

the end of the experiment all calves were found seronegatives for

bovine parainfluenza type 3.

Calves were randomly allocated in three groups. They were

1-month-old ±10 days at day of vaccination (considered as day

0). The first group (8 calves) was vaccinated twice at 3 weeks

interval with 2 mg of NSRS protein with MontanideTM ISA71 VG

adjuvant by the intramuscular route (2 ml, left flank). The sec-

ond group (8 calves) received twice at 3 weeks interval 2 mg of

NSRS protein with MontanideTM ISA71 VG adjuvant by the intra-

muscular route (2 ml, left flank) and 10 mg of NSRS protein with

MontanideTM IMS 4132 VG adjuvant by the intranasal route (1 ml

per nostril, using a nebulizator device for medical use, MADgic700,

Wolfe Tory Medical, Utah, USA). The doses of antigen were defined

according to one preliminary experiment done in calf to test the

safety and immunogenicity of the NSRS/adjuvant formulations (not

shown). The last group (8 calves) was untreated and served as neg-

ative control for the two vaccination regimen. Three weeks after

the final vaccination, all calves were challenged with 105 PFU of

the BRSV-3761 inoculum by intranasal nebulization (10 ml, tra-

cherine IBR vaccine nebulizator) and intratracheal route (10 ml,

Intraflon 2 catheter, Vycon, France). Two calves per group were

euthanized under general anesthesia overdose (5 mg/kg ketamine

followed by 15 mg/kg pentobarbital sodium) 6 days post-challenge

(day 48), the remaining being euthanized 20 days post-challenge

(day 62).

2.6. Clinical examination

Calves were observed for clinical signs of respiratory tract dis-

ease from 3 days prior infection to 20 days post-infection. Clinical

assessments were made at the same time twice a day by the

same veterinarian. Calves were examined for body temperature,

nasal discharge, coughing, decrease appetite, general state, abnor-

mal breathing, respiratory rate and abnormal lung sounds. Clinical

scores were done for each calf as already described [26] with slight

modifications. Rectal temperatures and respiratory frequencies

were evaluated separately. Scores for respiratory rates (RR/min)

were 0 (RR < 35), 1 (35 < RR < 45), 2 (45 < RR < 60) and 4 (RR > 60). A

score between 0 (normal), 1 (mild) or 2 (severe) was attributed for

nasal discharge, coughing, decrease appetite, general state, dysp-

noea, and abnormal lung sound parameters, respectively. A fold

coefficient of 3, 1, 3, 2, 2, 3 and 3 was subsequently attributed

for respiratory rate, nasal discharge, coughing, decrease appetite,

general state, dyspnoea, and abnormal lung sound parameters,

respectively.
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Table 1
Study design.

Group label (no.) Vaccination (s) Challenge No. of euthanized calves

Day 0 Day 21 Day 42 Day 48 Day 62

No vaccine (n = 8) – – BRSV 2 6

NSRS i.m. (n = 8) NSRS/ISA71 i.m. NSRS/ISA71 i.m. BRSV 2 6

NSRS i.m. + i.n. (n = 8) NSRS/ISA71 i.m. NSRS/IMS4132 i.n. NSRS/ISA71 i.m. NSRS/IMS4132 i.n. BRSV 2 6

2.7. Fluid and tissue samples collected

To follow antigen-specific antibody responses, nasal swabs in

PBS 0.1% Tween and anti-proteases (Complete Mini, Roche Applied

Science, Indianapolis, USA) and blood samples were collected at

days 0, 20, 41 and 62. To monitor virus detection after challenge,

nasal swabs were collected daily from days 39 to 62 from each

animal in 1 ml of RLT-buffer (Qiagen S.A., France) for real time RT-

PCR or in 1 ml PBS buffer for commercial EIA assay (Speed® ReSpiVB

BVT, La Seyne-sur-Mer, France).

Complete necropsies of calves were performed immediately

after euthanasia at days 48 and 62. Lymphatic nodes (prescapular,

tracheo-bronchial and mediastinal) were dissected out and pro-

cessed for subsequent T cell assays. Lung macroscopic lesions were

recorded on a standard lung diagram and expressed as % pneu-

monic consolidation of the cranial lobes (photographs were taken).

BAL was performed with 500 ml D-MEM supplemented with antibi-

otics. After cell numeration, 2 × 105 BAL cells were cyto-centrifuged

(Cytospin 4, Shandon, Thermo Scientific, France) on Superfrost

plus slides (SFPLUS-42, Milan, France) for May-Grünwald-Giemsa

staining, and 2 × 106 cells were fixed in Cyto-Chex (Streck,

NE, USA) for flow cytometry analysis. The left-over BAL cells

were lysed in RLT-buffer (RNeasy Mini, Qiagen S.A., France) for

RNA extraction. Microscopic analysis was performed on tissue

samples from the right cranial lobes of lungs, fixed in formalde-

hyde, embedded in paraffin, 4-�m sectioned, deparaffinized and

counterstained with hematoxylin/eosin/saffran, analyzed and pho-

tographed. Examination for bacterial infection was performed on

the same tissue samples after Gram staining. Samples of cra-

nial lobe of the lungs were also collected in RNAlater (Qiagen

S.A., France) for subsequent BRSV quantification by real time RT-

PCR.

2.8. Real time RT-PCR

Virus shedding in nasal swabs was quantitatively determined

by a real time RT-PCR assay according to Boxus et al. [27] except

that quantitative analysis of BRSV RNA was performed relative to

the bovine glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

expressed housekeeping gene [28]. The same RT-PCR was used for

quantification of BRSV in BAL and lung tissues.

2.9. Immunostaining of BRSV antigens in lung tissue sections

Paraffin-embedded lung tissue sections were deparaffinized,

rehydrated in Tris 0.05 M pH 7.4 with 0.2% CaCl2 and then per-

meabilized with 0.02% Saponin (Sigma–Aldrich, France). BRSV

antigens were detected using MoAb IgG2b anti RSV-F (clone

B016, AbD Serotec, Germany) diluted 1:100 in Tris 0.05 M

pH 7.4, 0.2% CaCl2 and 0.02% Saponin. An irrelevant isotype-

matched mouse Ab was used as a control for non-specific

staining. Binding of primary Ab was revealed by adding HRP-

conjugated anti-mouse IgG followed by the insoluble peroxydase

substrate 3,3′-Diaminobenzidine (SigmaFastTM, Sigma–Aldrich,

France). The tissue sections were then counterstained with hema-

toxylin.

2.10. Flow cytometry analysis of BAL lymphocytes

One million BAL cells were incubated for 20 min in RPMI con-

taining 10% horse serum (RPMI-HS) on ice. BAL cells were then

stained for 30 min on ice with mouse MoAbs anti-bovine CD4

(IgG2a, clone ILA11, VMRD, WA, USA), CD8 (IgM, clone BAQ111A,

VMRD, WA, USA) and CD45RO (IgG3, clone ILA116, VMRD, WA,

USA), or matching isotype control mouse antibodies, all diluted

1:500 in RPMI-HS. BAL cells were washed and then incubated for

another 30 min with anti-isotype antibodies conjugated to fluo-

rochromes (FITC anti-IgG3, PE anti-IgG2a, Cy5 anti-IgM, Invitrogen

Life Science, France). Cells were then fixed in 10% CellFIX (BD Bio-

sciences, France). All samples were analyzed on a FACScalibur (BD

Biosciences, France) collecting data on at least 20,000 lymphocytes

gated according to their forward and side scatter features.

2.11. Preparation of lymph node cells

Lymph nodes were mechanically disrupted for cell dissociation

in sterile RPMI-1640 medium plus 10% fetal calf serum (FCS) at

4 ◦C. The recovered cells were filtered through a sterile 100 �m cell

strainer (BD Biosciences, France) and washed twice in RPMI-1640

medium plus 10% FCS. PBMC and lymph node cells were finally sus-

pended in X-vivo 15 medium (BioWhittaker, Lonza, Switzerland)

supplemented with 1% FCS, 2 mM l-glutamine, 100 U/ml Penicillin

and 0.1 mg/ml Streptomycin and cultivated in vitro for T cell prolif-

eration or IFN-� detection assays.

2.12. Antigen-specific lymphoproliferation assays

Proliferation assays were carried out in 96-well flat-bottomed

plates. Isolated lymph node cells were seeded in triplicate at 3 × 105

cells per well with or without NSRS (10 �g/ml final concentration).

Plates were incubated at 37 ◦C in 5% CO2 for 96 h, then pulsed

overnight with 1 �Ci [3H]-thymidine per well. Cells were then col-

lected on filter mats using a cell harvester (Filtermate, PerkinElmer,

France) and radioactivity was measured in a liquid scintillation

luminescence counter (MicroBeta TriLux, Wallac Inc., Gaithersburg,

MD, USA). Results were expressed as stimulation indexes (cpm of

stimulated cells over cpm of unstimulated control cells).

2.13. IFN-� production

Lymph node cells were plated in 96-well plates (Falcon 3072)

in triplicates at 3 × 105 cells per well and incubated at 37 ◦C, in 5%

CO2, with or without NSRS (10 �g/ml final concentration). Super-

natants were harvested at 72 h and the IFN-� content was tested

using a specific ELISA test (Bovigam, Biocor, Melbourne, Australia),

according to manufacturer’s instructions. Results were expressed

as stimulation indexes (OD450 nm of NSRS-stimulated cells over OD

of unstimulated control cells).

2.14. Detection of NSRS-specific bovine antibody by ELISA

Individual sera and nasal secretions were assayed for N-

specific antibodies (total Ig, IgG1 and IgA) by ELISA. Microtiter

plates (Immulon 2HB, Thermo Labsystems, France) were coated
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overnight at 4 ◦C with N antigen (200 ng per well in 100 �l

carbonate–bicarbonate buffer 0.1 M, pH 9.5). Plates were washed

five times with PBS 0.05% Tween 20 between each step of the

assay. After coating, the remaining protein binding sites were sat-

urated with 5% horse serum in PBS 0.05% Tween 20 (PBS-T-HS)

for 1 h at 37 ◦C. Samples were serially diluted threefold in PBS-

T-HS starting at 1:30 for sera and 1:3 for nasal secretions and

incubated for 2 h at 37 ◦C. Antigen-bound Abs were detected using

HRP-conjugated anti-bovine Ig(H + L), HRP-conjugated sheep anti-

bovine IgG1 or rabbit anti-bovine IgA (AbD Serotec, Germany)

diluted 1:1000, incubated for 1 h at 37 ◦C, followed when required

by an incubation with goat anti-rabbit Ig HRP-conjugated. The

TMB substrate (Kirkegaard & Perry Laboratories Inc., MD, USA) was

added and the reaction was stopped after 10 min by 1 M phospho-

ric acid. The absorbance was measured at 450 nm with an ELISA

plate reader (MRX Revelation, Dynex Technologies, Germany). The

results were expressed as endpoint antibody titers calculated by

regression analysis plotting dilution versus A450 (regression curve

y = (b + cx)/(1 + ax) using Origin software). Endpoint titers were cal-

culated as the highest dilution giving twice the absorbance of

negative control sample.

Alternatively, plates were coated with a lysate from BRSV-

infected or mock-infected Turbinate cells in PBS. Lysate was

obtained by treating the BRSV-infected or mock-infected Turbinate

cells with 1% n-Octyl glucoside (Sigma–Aldrich, France) and 5 mM

EDTA in 10 mM, pH 7.6 Tris saline buffer. Serum samples were

diluted 1:270 and incubated on alternate rows with BRSV-infected

and mock-infected Turbinate lysates, and the ELISA was performed

as described above. To measure anti-BRSV-specific binding, back-

ground antibody binding to control lysate was substracted from

binding to BRSV-infected cell lysate.

2.15. Statistics

All data were expressed as arithmetic mean ± standard error

of the mean (SEM). Statistical analysis on immune parame-

ters was performed using non-parametric Mann–Whitney U-test

(http://elegans.swmed.edu/∼leon/stats/utest.html). Levels of sig-

nificance are indicated on the graphs with stars: *p < 0.05, **p < 0.01,
***p < 0.001.

Peak clinical signs and viral load values were compared by one-

way analysis of variance. Logarithmic transformation was applied

to fulfill the conditions of variances in homogeneity and normality

when necessary. A three-factor split-plot ANOVA test was used to

calculate the effect of the factors ‘day’ and ‘vaccination’ between

groups. For significant results, a Bonferroni’s test among contrast

was then used to compare the two conditions at each day post-

challenge.

3. Results

3.1. Nano-rings were obtained with N from HRSV Long strain,

formulated with MontanideTM adjuvants and tested for their

immunogenicity

We have previously shown that soluble RNA-nucleoprotein

complexes forming nano-rings (NSRS) can be purified from bacte-

ria expressing recombinant N and the C-terminal region (residues

161–241) of P protein (PCT) from the HRSV Long strain [20]. The

same protocol was used in order to purify BRSV N proteins. The

BRSV N protein was co-expressed with PCT from either HRSV or

BRSV origin. As shown Fig. 1a, the BRSV N protein (strain A2Gelfi)

was only recovered in the unsoluble fraction of bacterial lysates,

and attempts to purify it by co-expression with GST-PCT were

unsuccessful, either using PCT from BRSV or HRSV origin. On the

other hand, the HRSV N protein was soluble and efficiently purified

by BRSV PCT fused to GST (Fig. 1a).

The N proteins of human strain Long and bovine strain 3761 are

highly conserved since they share 93.6% of sequence amino acid

identity and 99.2% of amino acid sequence similarity (Fig. 1b). Thus

we used the NSRS nano-rings derived from the HRSV Long strain

as a vaccine candidate against BRSV infection. To control that NSRS

were not degraded after emulsification with MontanideTM ISA71

VG or MontanideTM IMS4132 VG, the proteins present in the two

formulations were analyzed by SDS-PAGE native gel electrophore-

sis and electron microscopy as described previously [20]. In both

cases, the N protein was recovered as SRS (data not shown).

Intramuscular injection is the classical way to vaccinate bovine.

Our previous data in mice showed that nasal vaccination with

the nano-rings NSRS was the most efficient immunization route

for preventing HRSV replication in lung [22]. Thus we decided to

administer the NSRS vaccine via both intramuscular and intranasal

route at the same time (group NSRS i.m. + i.n.) and test the benefit of

nasal vaccination by comparison with a group of calves receiving

the vaccine by intramuscular injection only (group NSRS i.m.). All

calves were vaccinated twice at 3 weeks interval. A third group of

calves was left untreated (group “no vaccine”). No adverse clinical

reactions were observed after the first or second immunizations.

To monitor the immunogenicity of the vaccine regimen, N-

specific antibodies were investigated in serum samples and nasal

secretions (Fig. 2). Calves vaccinated with NSRS either i.m. or

i.m. + i.n. displayed anti-N Ab in serum and in nasal secretions,

detectable after the first immunization and increasing after the

booster immunization (Fig. 2a and b). Anti-N Ab titers were not

different between the two vaccinated groups. The nasal anti-N Ab

response was of IgG1 isotype (Fig. 2c), with lower anti-N IgA titers

arising mostly after the booster immunization (Fig. 2d). Nasal anti-

N Ab titers were higher in the group NSRS i.m. + i.n. compared to

NSRS i.m. (p < 0.05 for Ig titers and p < 0.01 for IgA titers, at day 41).

Non-vaccinated control calves had significant anti-N Ab titers in

blood and nasal secretion only after viral challenge (Fig. 2a and

b, p < 0.01 between days 0–41 and day 62, Ig titers in the no vac-

cine group). The antibodies elicited upon NSRS vaccination were

also able to recognize the native viral N as shown by their specific

binding to BRSV-infected Turbinate cells as antigen (OD×100 at day

41 were 22 ± 10, 287 ± 64 and 188 ± 41, for groups no vaccine, NSRS

i.m. and NSRS i.m. + i.n., respectively, p < 0.01 between vaccinated

and non-vaccinated calves).

3.2. NSRS vaccination reduced clinical symptoms and extension of

lung lesions upon BRSV challenge

After challenge, all calves showed mild clinical signs of upper

respiratory tract infection that were essentially characterized

by slight mucous nasal discharge, except for one calf of group

NSRS i.m. which remained healthy. Cough was observed in two

non-vaccinated calves for 2–3 days. Moderate hyperthermia was

observed in all calves with no statistical differences between the 3

groups (data not shown). Respiratory signs consisted of moderate

to high increased respiratory rates and mild dyspnoea with increas-

ing lung sounds. Dyspnoea was also associated with wheezes and

crackles in some calves. Among the 6 calves of the non-vaccinated

control group, one calf was slightly affected, 4 calves were moder-

ately ill and one calf developed a marked dyspnoea, with abnormal

breathing, discordance, surrounding lung sounds of the cranial lobe,

wheezes and crackles. For the six calves of group NSRS i.m., one calf

showed no clinical signs, 2 calves developed very mild respiratory

symptoms and 3 calves developed a moderate dyspnoea. Finally,

3 calves of the group NSRS i.m. + i.n. developed very mild respira-

tory signs and the other 3 showed a moderate dyspnoea. The mean

clinical scores are shown in Fig. 3. Statistical analyses (three-factor
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Fig. 1. Production of soluble N from HRSV or BRSV origin. (a) Coomassie blue-stained SDS-PAGE analysis of GST-PCT and N proteins from HRSV (strain Long) and BRSV (strain

A2Gelfi) expressed in E. coli. Cell lysates (L) were centrifuged and the soluble (S) or unsoluble (P) fractions were run on a 12% polyacrylamide gel. Proteins were purified

by glutathione–Sepharose affinity from the cell lysates and the proteins pulled-down with the sepharose beads (B) were analyzed on the same gel. GST-PCT from HRSV or

BRSV together with the HRSV N protein were soluble, while BRSV N was only found in the unsoluble fraction. The HRSV N protein was efficiently purified by the BRSV PCT

fragment.

(b) N protein sequence comparison between HRSV Long strain and BRSV 3761 strain with the ClustalW2 sequence alignment program. Stars and points indicate amino acid

identities and similarities (two dots indicate strong similarity, one dot weak similarity), respectively.

Table 2
Clinical signs and lung lesions post-BRSV challenge.

Clinical signs (days) Lung lesions at day 6

Onset (n = 6) Peak (n = 6) Duration (n = 6) Extent (%) of consolidation in cranial left/right lobes per calf

No vaccine a1.4 ± 0.3 6.2 ± 0.7 18.2 ± 0.6 10/10; 20/15

NSRS i.m. b2.5 ± 0.3* 7.5 ± 0.6 13.5 ± 2.5 5/5; 5/5

NSRS i.m. + i.n. 2.5 ± 0.3* 8.7 ± 0.4* 14.0 ± 1.5* 5/0; 5/5

a Data (onset, peak, duration) are given as mean ± SEM.
b Stars indicate significant differences using the non-parametric Mann–Whitney U-test (p one-tailed) between the vaccinated groups (NSRS i.m. or NSRS i.m. + i.n.) and the

non-vaccinated group. Onset, peak and duration were not significantly different between the NSRS i.m. and NSRS i.m. + i.n. vaccinated groups.
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Fig. 2. N-specific antibody responses elicited in serum and nasal secretion upon NSRS vaccination and BRSV challenge. Calves were vaccinated twice with NSRS i.m. or i.m. + i.n.

(day 0 and 21) followed by challenge with BRSV (day 42). (a) Serum Ig(H + L) and (b) nasal Ig(H + L) titers to N were measured by an ELISA endpoint assay. N-specific IgG1 and

IgA Ab were quantified in nasal secretions (c and d). Data are expressed as mean ± SEM and plotted with a logarithmic scale. Stars indicate significant differences between

the two vaccinated group (NSRS i.m. and i.m. + i.n.) and the non-vaccinated one.

split-plot ANOVA test) indicated group and time effects between

the non-vaccinated group and the groups NSRS i.m. or NSRS i.m. + i.n.

No differences were found between the two vaccinated groups

(NSRS i.m. and NSRS i.m. + i.n.). Significant reduction of mean clin-

ical scores (Bonferroni’s test among contrast, p < 0.05) was found

for the group NSRS i.m. at days 5 and 6, for the group NSRS i.m. + i.n.

at days 5–7 post-infection when compared to the non-vaccinated

group (Fig. 3). Onset, peak and duration of clinical scores were cal-

culated for each group (Table 2), showing delayed onset, peak and

shorter duration of clinical symptoms in the two vaccinated groups.

Thus the calves vaccinated with NSRS, either i.m. only or i.m. + i.n.,

Fig. 3. Clinical scores following BRSV challenge. Respiratory rhythm, anorexia, pres-

ence of nasal discharge, lung sounds, cough and demeanour were recorded daily

after challenge and clinical scores were calculated. Data represent means ± SEM

(n = 6) in each group from day 0 (challenge) to day 19 after challenge. Stars indicate

significant differences between the two vaccinated group (NSRS i.m. and i.m. + i.n.)

and the non-vaccinated one.

were partly protected against the respiratory disease caused by

virus challenge.

Two out of 8 calves of each group were euthanized on day 6 after

challenge. The lungs were examined and the extent of macroscopic

lesions was recorded. For all animals gross lesions were restricted to

the cranial lobes except for one non-vaccinated calf showing lesions

also in the middle and accessory lobes. Some patchy areas were

atelectasic, collapsed, deep red and rubbery in texture. Extension

of the lung lesions of calves is detailed in Table 2 for the right and the

left cranial lobes respectively. To summarize, the extension of con-

solidation lesions varied between 10% (Fig. 4a, right cranial lobe)

and 20% for unvaccinated calves while it was estimated to be 5% for

the vaccinated calves (Fig. 4b, right cranial lobe). No macroscopic

lesions were found for calves euthanized on day 20 post-challenge.

Histological examination of lung tissue sections (sample from

right cranial lobe, taken at the site of macroscopic lesions) revealed

typical bronchointerstitial pneumonia (Fig. 4c and e) characterized

by necrotizing bronchiolitis, formation of bronchiolar epithelial

syncitia and proliferative alveolitis in 2 calves from the non-

vaccinated group. In contrast, lung tissue sections from 3 out of

4 vaccinated calves (2/2 NSRS i.m. + i.n. and 1/2 NSRS i.m.) showed

limited cellular infiltration in the peribronchiolar and bronchiolar

areas, with minimal densification of the alveolar areas (shown of

one NSRS i.m. + i.n. calve, Fig. 4d). Besides, most of the bronchiolar

lumina were clear of cellular debris (Fig. 4f). The presence of BRSV-

infected cells was revealed by immunostaining on the same lung

tissue sections. BRSV-specific staining was found in the epithelial

cells of the bronchioles from either vaccinated or non-vaccinated

calves (Fig. 4g and h, brown staining).

3.3. NSRS vaccination reduced BRSV loads in nasal secretions

The replication of BRSV in the respiratory tract of infected calves

was further investigated by real time RT-PCR on BAL cells and
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Fig. 4. Macroscopic and microscopic lung lesions following BRSV challenge. On day 6 post-BRSV challenge (peak of clinical scores), two calves per group were euthanized

and their lungs dissected out for macroscopic analysis of lesions (a and b). Lung pieces were sampled in the right cranial lobe at the border between red atelectatic collapsed

pulmonary areas and healthy tissue, fixed in formalin and embedded in paraffin. Histological examination of sections counterstained with hematoxylin/eosin/saffran showed

areas of bronchointerstitial pneumonia with proliferative alveolitis in non-vaccinated calves. This marked infiltration of inflammatory cells was observed in the alveolar,

peribronchiolar and bronchiolar areas (c) and was associated to a necrotizing bronchiolitis (e). Bronchiolar lumen contained sloughed necrotic epithelial cells and sometimes

multinucleate syncytial cells closely associated with the bronchiolar epithelium, and few inflammatory cells infiltrating the bronchiolar epithelium. Similar sections in

vaccinated calves showed alveolar functional areas with minimal thickening of alveolar septa (d) and bronchiolar lumen clear of cellular debris (f). The same lung tissue

sections were stained for BRSV antigens with an anti-F monoclonal antibody (brown staining) and counterstained with hematoxylin (pale blue staining). The control

immunohistochemical reaction with an isotype-matched irrelevant mouse IgG was negative (data not shown). Immunohistochemical staining of BRSV-F revealed virus-

infected bronchiolar epithelial cells (g and h) with viral antigens among the necrotic cells sloughed the bronchiole lumen (g). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of the article.)

lung samples (right cranial lobe). At day 6 post-infection, viral RNA

was detected in BAL cells and lung tissue of the two euthanized

calves of each group with no significant differences between groups

(Fig. 5a). These data are in agreement with the finding of BRSV-

infected cells in lung tissue sections by immunostaining. No virus

could be detected at day 20 post-infection in BAL and lung of any

calves.

The kinetic and amount of virus shedding was monitored in

nasal secretions on a daily basis post-challenge. BRSV RNA was

detected in nasal secretions of all infected calves (Fig. 5b and c) with
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Fig. 5. BRSV RNA detection and viral load following challenge. The viral loads were

examined by performing quantitative real time RT-PCR on total RNA extracted from

BAL cells and lung pieces collected on two calves per group euthanized on day 6 after

challenge (a) and from the nasal swabs sampled daily from the day of challenge up

to 19 days after (b and c). Viral load is expressed as the log of BRSV copies per 107

GAPDH cDNA (mean ± SEM, n = 6). Stars indicate significant differences between the

two vaccinated group (NSRS i.m. and i.m. + i.n.) and the non-vaccinated one. The daily

percentage of positive calves per group is shown (c).

a peak of virus shedding at day 5 post-challenge (103.6±1, 102.9±0.7

and 103.8±1.2 copies/107 copies of GAPDH for groups no vaccine,

NSRS i.m., and NSRS i.m. + i.n., respectively). No significant differ-

ences were found between the two vaccinated groups. However,

statistical analyses (three-factor split-plot ANOVA test) indicated

group and time differences between the two vaccinated groups and

the non-vaccinated group. Lower amounts of viral RNA were found

in group NSRS i.m. at days 4 (p = 0.06) and 11 (p < 0.05) and in group

NSRS i.m. + i.n. at days 2, 3 and 11 (p < 0.05, Fig. 5b). Importantly the

duration of viral excretion in nasal swabs was reduced in the vac-

cinated groups, BRSV being detected in swabs from days 1 to 17

post-infection in non-vaccinated calves versus days 1–8 in group

NSRS i.m., and days 1–11 in group NSRS i.m. + i.n. (Fig. 5c). In addition,

the detection of BRSV proteins in nasal secretions by EIA assay on

five calves of each group at days −1, 0, 2 to 7, 9, 11, 13 and 15 post-

infection showed that less calves were found positives on a daily

Fig. 6. Cell subsets recruited to the BAL following BRSV infection. Two calves per

group were euthanized 6 days after BRSV challenge and the other calves were

euthanized 20 days after challenge. Lungs were dissected out of the thoracic cage

and lavaged with 500 ml of medium. The cells present in BAL were collected

by cyto-centrifugation. The cellular composition of the BAL was established after

May-Grünwald-Giemsa coloration and numeration of macrophages, lymphocytes,

neutrophils and eosinophils (a). BAL cells were labeled with anti-CD45RO, CD4 and

CD8 antibodies and analyzed by flow cytometry to determine which T lymphocyte

subsets were recruited to the lung upon infection (b). 200,000 events were acquired,

gated on lymphocytes according to FSC/SSC and CD45RO+ criteria (at least 5000

events were gated). Data are mean ± SEM, n = 2 at day 6 and n = 6 at day 20.

basis in the two vaccinated groups compared to the non-vaccinated

group (data not shown).

3.4. NSRS vaccination and BRSV challenge was associated with

few granulocytes and mixed T cell subsets in BAL

Respiratory infection is usually accompanied by an influx of

lymphocytes and granulocytes into the lungs. BAL cells were

collected from calves euthanized on days 6 (n = 2) and 20

(n = 6) after challenge and the percentages of macrophages, lym-

phocytes, neutrophils and eosinophils were determined after

May-Grünwald-Giemsa staining. Six days after infection, we

observed neutrophils in all BAL whether or not the calves had been

vaccinated (18 ± 4%, n = 6, Fig. 6a, black bars). Twenty days post-

challenge, the percentages of neutrophils in BAL ranged between

0.1 and 2.5%, without any significant differences between the three

groups (no vaccine, NSRS i.m. and NSRS i.m. + i.n.). No eosinophils

were found in BAL at 6 and 20 days post-challenge (Fig. 6a).

To get an insight into the pattern of T cell responses in the lung

upon challenge, CD4 and CD8 T lymphocytes in BAL were moni-

tored by flow cytometry analysis (Fig. 6b). Lymphocytes were gated

according to their low FSC/SSC features and memory/activated

lymphocytes were subsequently gated on the basis of CD45RO

expression. The proportion of CD4+ and CD8+ cells within gated

CD45RO+ lymphocytes was determined. For the non-vaccinated

calves experiencing a primary BRSV infection, CD8+ effector lym-

phocytes were found rapidly and more abundantly than their CD4+

counterpart into the airways (Fig. 6b, day 6). The same pattern

of T cell subsets on day 6 post-challenge (% CD8+ > CD4+ mem-
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Fig. 7. N-specific memory T cell responses following vaccination and challenge. The

lymph nodes draining the site of i.m. vaccination (prescapular) and the upper and

lower respiratory tract (tracheo-bronchial and mediastinal, respectively) were dis-

sected out on day 20 after BRSV challenge and processed to isolate lymph node cells.

(a) In vitro lymphocyte proliferation was evaluated by measuring [3H]thymidine

incorporation after NSRS or mock antigenic restimulation for 96 h and values were

expressed as stimulation index (SI). Individual SI is plotted for each group (square,

circle, triangle) and the mean is shown next (black line). (b) IFN-� was measured in

the supernatant of lymph node cells cultivated for 72 h with NSRS or with medium

only (mock). Results are expressed as SI and data displayed individually as in (a).

ory/effector cells) was observed for the NSRS i.m. vaccinated calves

whereas calves from the group vaccinated with NSRS i.m. + i.n.

tended to have more memory/effector CD4+ than CD8+ T cells

into their airways. By day 20 post-challenge, CD45RO+ CD4+ and

CDR45RO+ CD8+ T cells were found in same proportion among BAL

cells without significant differences between groups.

3.5. NSRS vaccination and BRSV challenge primed N-specific T

cells in calves

In primary BRSV infection of calves, N is a known target of cell-

mediated immunity [29]. Thus we tested whether NSRS vaccination

had primed memory T cells responses that could be revealed post-

challenge. Leukocytes were isolated from lymph nodes on day 20

post-BRSV challenge and then restimulated in vitro with NSRS. N-

specific cellular responses were measured by proliferation index

based on tritiated thymidine incorporation (Fig. 7a). To get insight

into the function of T lymphocytes elicited upon NSRS immunization

and BRSV challenge, their capacity to make IFN-� was assessed by

ELISA in lymph node cell culture supernatant (Fig. 7b).

N-specific T cell responses were primed in the prescapular

lymph node draining the site of i.m. vaccination with NSRS. Only

NSRS vaccinated calves displayed a N-specific proliferative response

(stimulation index of 4.2 ± 1.4 and of 3.4 ± 0.7, NSRS i.m. and NSRS

i.m. + i.n. respectively, versus 1.1 ± 0.1 for non-vaccinated calves,

p < 0.05). Accordingly the capacity of T cells isolated from the

prescapular LN to make IFN-� was significantly higher in the vac-

cinated calves than in the non-vaccinated one (p < 0.05% between

no vaccine and NSRS i.m.).

Cells isolated from the lymph nodes draining the upper airways

(tracheo-bronchial LN) and the lung (mediastinal LN) prolifer-

ated in response to NSRS and the mean proliferation index of the

two vaccinated groups was not different from the non-vaccinated

group, suggesting a T cell priming mainly due to BRSV infection.

However when T cell memory responses were monitored by IFN-

� production in tracheo-bronchial LN, the vaccinated calves had

higher responses than the non-vaccinated one (p < 0.05% between

no vaccine and NSRS i.m. + i.n.). The strongest IFN-� production

was recorded in the mediastinal LN and tended to be higher for

T cells isolated from vaccinated calves (SI of 1.4 ± 0.2, 2.7 ± 0.6 and

2.4 ± 0.5 for no vaccine, NSRS i.m. and NSRS i.m. + i.n. respectively,

p = 0.07 between no vaccine and NSRS i.m. and p = 0.06 between

no vaccine and NSRS i.m. + i.n.). Thus the IFN-� response in the

lymph nodes draining the airways was suggestive of memory T cells

primed by NSRS vaccination and boosted upon BRSV challenge.

4. Discussion

No RSV vaccine is yet licensed for human use and the inac-

tivated or attenuated vaccines commercialized for bovine have a

limited efficacy and a short duration of protective immunity. Dif-

ficulties of RSV vaccine development include the lack of a relevant

animal model for human, the need to immunize immunologically

immature young infants or calves with maternal RSV antibodies,

the impact of RSV variability on vaccination and the risk of vaccine-

associated disease enhancement. We were the first to publish an

efficient and safe vaccination strategy against RSV using the nucle-

ocapsid protein alone as a vaccine antigen, under the form of soluble

nanoparticles referred to as NSRS [22]. In this previous study done

in mice we have demonstrated that NSRS is highly immunogenic

when delivered via the nasal route and that the immune response

primed upon vaccination is protective against an HRSV challenge

[22]. In the present study, we investigated the potency of NSRS as

a vaccine in calves that are the natural hosts for BRSV and display

clinical respiratory symptoms and lung lesions upon infection.

Our findings indicate that calves vaccinated with NSRS were par-

tially protected against the respiratory disease caused by a virus

challenge. Significantly lower clinical scores were observed for

two to three days in the vaccinated calves compared to the non-

vaccinated calves and the duration of clinical signs was reduced in

the vaccinated calves. At the precise site of virus-induced lesions, in

the cranial lobe of the lungs, the vaccination with NSRS reduced the

extent of local inflammatory consolidation. The vaccination with

NSRS reduced the duration of viral shedding and the frequency of

virus-secreting calves on a daily basis but it did not prevent viral

shedding in nasal secretion, nor viral replication in lung. There was

no difference between the two vaccination regimen (i.m. only or

i.m. + i.n.) for their capacity to reduce clinical scores and viral load.

Importantly the degree of protection conferred by vaccination

with NSRS was not associated with markers of disease exacerba-

tion (like eosinophilia) as is reported when vaccinating calves with

FI-BRSV or live-BRSV [6]. Indeed no eosinophils and very few neu-

trophils were found in broncho-alveolar lavages of calves autopsied

3 weeks after challenge.

Several points of discussion could explain the partial protection

of calves by vaccination with NSRS, whatever the protocol used.

Clear respiratory symptoms and lung lesions were induced upon

BRSV challenge but they were not severe. As frequently published

with BRSV challenge models [30–32], it is difficult to reproduce the

severe clinical signs or lesions observed upon natural infections.
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In calves normally bred in farms and not in isolation units like in

the present study, bacterial or virus co-infections complicate the

classical BRSV disease. The bovine parainfluenza virus 3 (BPIV-3),

which is widespread in 2–8-month-old cattle, reduces pulmonary

defences [33,34] and thus may enhance the severity of the BRSV

pathogenicity. Both viruses, BRSV and BPIV-3, are important predis-

posing factors in the development of bacterial bronchopneumonia

in cattle. In addition intrinsic host parameters seem to control the

severity of the disease since severe pathology is associated with

dysfunctions of the host’s response [8]. In this study, we used a

BRSV 3761 inoculum which was previously shown successful in

reproducing severe respiratory signs after intranasal and intra-

tracheal injections of 1 and 3-month-old Prim’Holstein calves (G.

Meyer, unpublished results; [18]). This inoculum contained BRSV

with few passages in cell cultures and with 3 cycles of amplifica-

tion in newborn calves, a condition also shown by others to induce

severe respiratory disease in calves [35,36]. By comparison with

previous successful experiments, failure to reproduce respiratory

distress syndrome in this study could be related to host intrinsic

parameters. Indeed, another study, using the same inoculum and

crossed Prim’Holstein/Normandy calves of same origin, also failed

to reproduce respiratory distress [19].

The nucleoprotein subunits (NSRS) used in this study were from

HRSV origin. The gene encoding the nucleoprotein is shown to be

one of the most conserved between BRSV and HRSV with an average

of ≈94% amino acid identity. The nucleoprotein from BRSV is recog-

nized by bovine CD8+ T cells but the precise CTL epitopes have not

been defined yet [29]. In human, HLA-B07, HLA-B08 and HLA-A02

restricted epitopes were mapped in the nucleoprotein [12,14] and

interestingly their amino acid sequence is fully conserved among

various HRSV field isolates and with BRSV strains [14]. The mecha-

nisms of CTL cross-reactivity have been recently investigated with

well-characterized CTL epitopes from HIV showing that biochem-

ically similar amino acid substitutions do not drastically affect

recognition by TCR [37]. Some level of cross-protection between

HRSV and BRSV has been demonstrated in the cotton rat model

in which BRSV was tested as a possible Jennerian vaccine against

HRSV [38]. Among the viral antigens that may be cross protec-

tive between BRSV and HRSV, the BRSV-F (81% amino acid identity

with HRSV-F), delivered as DNA vaccine, was shown to protect

mice against an HRSV challenge [39]. The present study brings

new data to support the hypothesis of common B or T epitopes

between BRSV and HRSV nucleoproteins. Indeed, in our study, pri-

mary BRSV infection resulted in antibody and cellular immunity

that could be revealed with an NSRS coated ELISA assay or following

an in vitro boost with NSRS, respectively. Conversely serum Ab from

NSRS vaccinated calves reacted against a BRSV-infected cell lysate.

This indicates that recombinant N from HRSV origin assembling

into nano-rings and the nucleocapsid protein N from BRSV strain

3761 displayed at least some common epitopes and that vaccina-

tion with NSRS from HRSV protein sequences provide significant

cross-protection against BRSV challenge in calves.

Finally, several parameters such as the dose of vaccine, the type

of adjuvant and the route of administration may have influenced

the degree of protection. The oil based adjuvants in our NSRS vac-

cine are from the MontanideTM range that are present in several

veterinary vaccines used in the field to eradicate viral diseases (e.g.

foot and mouth disease) in many countries and for decades. In the

present study, we aimed at inducing a strong cellular response

therefore we selected a dedicated mineral oil based adjuvant for

intramuscular vaccination (ISA 71 VG). For intranasal vaccination

we selected one adjuvant from the MontanideTM IMS technology

(IMS 4132 VG) that has physical properties (flow-ability, viscosity)

permitting an easy delivery in animal nostril.

The intramuscular route is a classical way of injection for inacti-

vated vaccines. As it is true for live virus, intranasal vaccination

with live-BRSV or modified-live-BRSV vaccine has been shown

to be more efficacious in reducing viral shedding than intramus-

cular administration in young calves [40,41]. Moreover, a single

intranasal vaccination has previously been shown to prime calves

in the face of maternal antibodies [41]. Commercially available

modified-live-BRSV vaccines that were formulated and licensed

for parenteral use were shown to induce partial protection when

administered intranasally [42]. Recently a single intranasal dose of a

bivalent modified-live vaccine was shown to reduce nasal shedding

of BRSV after challenge at 10 or 21 days post-vaccination, despite

low BRSV neutralizing antibody titers detected after vaccination

[32].

Thus we have chosen the two vaccination regimen used in

the present study based on the hypothesis that administration

of NSRS via the nasal route would strengthen any level of pro-

tection conferred by the intramuscular vaccination. However no

differences in clinical and viral protection were observed between

calves vaccinated intramuscularly only, versus intramuscularly

plus intranasally. This could be explained by a weak response to

the intranasal vaccination or a masking of the immune response

induced after intranasal vaccination by those obtained after intra-

muscular vaccination. Unfortunately, due to a restricted number of

BRSV seronegative calves, it was not possible to have a supplemen-

tary group of calves vaccinated only by the intranasal route.

By itself, the intramuscular administration of NSRS powerfully

stimulated mucosal and systemic Ab responses and cellular immu-

nity. The intranasal administration of NSRS given with the i.m.

immunization increased some immune responses at the level of

the upper respiratory tract: memory T cells producing IFN-� in

tracheo-bronchial lymph node and antigen-specific IgA in nasal

secretion.

The expression of CD45RO is considered a reliable marker to

monitor activated CD4 and CD8 T cells in bovine [43,44]. In the

context of primary infection with BRSV, CD8 T cells are the pre-

dominant subset recruited to the airways [45] and prior vaccination

with inactivated or live-attenuated virus can modify the pattern

of T cell responses [46]. We had reported previously a preferen-

tial priming of CD4 responses following challenge with HRSV-A2

of mice vaccinated intranasally with NSRS [22]. Thus it is possible

that the intranasal delivery of NSRS was responsible for the early

presence of CD45RO+ CD4+ T cell in bovine airways post-challenge

of the i.m. + i.n. vaccinated calves.

However, the nasal vaccination might not have been efficient

enough to prime protective local anti-viral immunity. This could

be related to the type of adjuvant used, the delivery device/route,

the antigen itself. Additional studies will be necessary to improve

intranasal vaccination with NSRS by testing several doses of anti-

gen in association with adjuvants used for intranasal delivery and

to compare results with those obtained after intramuscular vacci-

nation.

What are the immune correlates of the viral and clinical protec-

tion afforded by the NSRS vaccination?

We have shown in our previous study in mice that the anti-

bodies raised against N were not neutralizing and thus unlikely to

be involved in the anti-viral protection. Cellular immunity medi-

ated by virus-specific CD8 T cells is required to clear BRSV from

the lungs of infected calves in a primary infection [47,48] and N

is one of the main targets of CD8+ T cell responses to BRSV [29].

In the present study we have shown that NSRS vaccination primed

antigen-specific T cell memory responses, characterized by their

capacity to proliferate and secrete IFN-�. In other studies imply-

ing NSRS vaccination in mouse or lamb animal models we have

shown that N-specific memory CD8 and CD4 T cell are primed ([22]

and S. Riffault unpublished results). Recently a vaccination regimen

using the nucleoprotein in a DNA prime–protein boost protocol was

shown to be superior to DNA or protein vaccination alone to prime



S. Riffault et al. / Vaccine 28 (2010) 3722–3734 3733

antigen-specific CD8 memory T cells, to protect against BRSV repli-

cation and to reduce lung pathology [19]. However, because DNA

vaccination is not authorized in human, the use of N protein alone

for vaccination of newborn children could be an interesting alter-

native approach. Moreover NSRS can be produced in large amount

in bacteria and their nanoring structure is very stable either at 4 ◦C

or 20 ◦C (our unpublished observations), making their production

and storage cheap and easy.

Setting up the right conditions for cross-protective cellular

immunity against conserved antigens is a growing challenge in

the vaccinology field nowadays (e.g. universal Influenza vaccine).

The nucleoprotein subunit approach described in the present study

is efficient for inducing cross-protective immunity against RSV.

Interestingly the NSRS structures are very potent at stimulating anti-

body responses both at the systemic and mucosal levels. We have

recently obtained the X-ray 3D structure of the NSRS [21] and have

been able to map exposed sites on the nano-rings to which other

antigenic motifs can be grafted. Our next goal will be to improve

the degree of protection by using RSV nucleocapsid nanoparticles

grafted with peptidic epitopes from the BRSV fusion- (F) and glyco-

(G) proteins in order to trigger neutralizing antibody responses in

addition to anti-N cellular responses.
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