13 research outputs found

    Pre-but not post-meiotic senescence affects sperm quality and reproductive success in the North African houbara bustard

    Get PDF
    Age-dependent reduction in reproductive success can arise due to multiple factors including a deterioration of reproductive physiology. Senescing males have been shown to produce ejaculates with poor sperm quality, which impinges on male reproductive success. In addition to individual age, gamete age can also affect male reproductive success. Accordingly, variance in male reproductive success can be due to pre-meiotic (referring to individual age) and post-meiotic senescence (sperm age). Here, we tested whether male senescence and sperm cell aging have additive or interactive effects on male reproductive success in a bird with a promiscuous mating system, the North African houbara bustard. To assess the effect of pre-meiotic aging, we compared male reproductive success between two age classes (3-6- and 12–16-year-old). To infer the effect of post-meiotic aging, male ejaculates were collected at three-time intervals following a common initial collection (day 1, 5, and 10). Therefore, day 1 ejaculates are supposed to contain younger sperm than day 5 and 10 ejaculates. Following controlled artificial inseminations, reproductive success was assessed using three fitness-linked traits (hatching success, chick growth rate and survival). In addition to reproductive output, we also assessed whether pre- and post-meiotic aging affected a wide range of sperm and ejaculate traits. In agreement with previous reports, we found that males in the older age class produced less sperm with poorer motility compared to young individuals. However, contrary to the prediction, we found that ejaculates collected at day 5 and 10 tended to have better sperm traits such as motility and velocity. The results on sperm traits were generally mirrored in the effect on reproductive success since young males produced offspring that grew faster and had better survival during the first month of life, and eggs fertilized by sperm collected at day 5 had the highest hatching success. In any of the models, there was evidence for interactive effects of male and sperm age. Overall, these results confirm the role of pre-meiotic aging on male reproductive success. The lack of evidence for sperm aging could come from the experimental design but might also reflect the pattern of mating frequency in a species with a lek-based mating system

    Life-history trait variation in a queen-size dimorphic ant

    Get PDF
    1. Size polymorphism is often connected to alternative life-history traits, which may eventually lead to distinct size classes. In the ant Myrmica ruginodis, larger macrogyne and smaller microgyne queen morphs have been suggested to follow different reproductive strategies, which has presumably resulted in several differences in their key life-history traits. 2. In this study, we examine the association of queen-size morphs with colony queen number (monogyny vs. polygyny), dispersal and queen recruitment patterns, as well as habitat associations of the queen morphs. We do this by sampling established queens from a large number of excavated nests from several populations, estimating genetic relatedness among coexisting queens and pitfall trapping free-ranging wingless queens. 3. Our results show that associations of queen morphs with colony queen number and nest-founding strategy holds only partly. The morph frequencies vary widely across populations from practically pure macrogyne to more than 50% microgyne, but the expected association of macrogyne occurrence with monogyny and microgyne with polygyny is not universal. Dispersal and queen recruitment patterns also show that although most macrogynes participate in nuptial flights and most microgynes are recruited back to their natal nests, a fraction of both morphs use the alternative strategy. 4. The polygynous microgyne morph has been suggested to specialize in stable habitats, but our results from Finnish mesic heath forests do not support this. This study shows that factors other than just queen size also influence life-history trait variation and reproductive strategies in ants.Peer reviewe

    Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion

    Full text link
    Long term precise radial velocity (RV) monitoring of the nearby star HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. Here we describe the results of a multi-epoch search for the companion responsible for this RV drift and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we report a high significance detection of the companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with \sim50-100 μ\muarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.71.0+1.2^{+1.2}_{-1.0} MJup_{\rm Jup} and an orbital separation of 3.530.06+0.08^{+0.08}_{-0.06} au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 155±15155\pm15 Myr. We find that theoretical atmospheric/evolutionary models incorporating deuterium burning for HD206893c, parameterized by cloudy atmospheres provide a good simultaneous fit to the luminosity of both HD206893B and c. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward to identify and characterize additional directly imaged planets. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&

    Unveiling the β Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data

    Get PDF
    Context. The nearby and young β Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at ≃9 au, as well as an inner planet orbiting at ≃2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution. Aims: We aim to further constrain the orbital and physical properties of β Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system. Methods: We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry. Results: The orbital properties of both planets are constrained with a semi-major axis of 9.8 ± 0.4 au and 2.7 ± 0.02 au for b and c, respectively, and eccentricities of 0.09 ± 0.1 and 0.27 ± 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of β Pictoris c might still be over-estimated. If no prior is provided on the mass of β Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of β Pictoris b, we find a solution in the 10-11 M[SUB]Jup[/SUB] range. Conversely, β Pictoris c's mass is well constrained, at 7.8 ± 0.4 M[SUB]Jup[/SUB], assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the β Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2σ level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M[SUB]Jup[/SUB] closer than 3 au, and more massive than 3.5 M[SUB]Jup[/SUB] between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M[SUB]Jup[/SUB]. Conclusions: Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of β Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of β Pictoris b.Peer reviewe

    Data_Sheet_1_Pre-but not post-meiotic senescence affects sperm quality and reproductive success in the North African houbara bustard.PDF

    Get PDF
    Age-dependent reduction in reproductive success can arise due to multiple factors including a deterioration of reproductive physiology. Senescing males have been shown to produce ejaculates with poor sperm quality, which impinges on male reproductive success. In addition to individual age, gamete age can also affect male reproductive success. Accordingly, variance in male reproductive success can be due to pre-meiotic (referring to individual age) and post-meiotic senescence (sperm age). Here, we tested whether male senescence and sperm cell aging have additive or interactive effects on male reproductive success in a bird with a promiscuous mating system, the North African houbara bustard. To assess the effect of pre-meiotic aging, we compared male reproductive success between two age classes (3-6- and 12–16-year-old). To infer the effect of post-meiotic aging, male ejaculates were collected at three-time intervals following a common initial collection (day 1, 5, and 10). Therefore, day 1 ejaculates are supposed to contain younger sperm than day 5 and 10 ejaculates. Following controlled artificial inseminations, reproductive success was assessed using three fitness-linked traits (hatching success, chick growth rate and survival). In addition to reproductive output, we also assessed whether pre- and post-meiotic aging affected a wide range of sperm and ejaculate traits. In agreement with previous reports, we found that males in the older age class produced less sperm with poorer motility compared to young individuals. However, contrary to the prediction, we found that ejaculates collected at day 5 and 10 tended to have better sperm traits such as motility and velocity. The results on sperm traits were generally mirrored in the effect on reproductive success since young males produced offspring that grew faster and had better survival during the first month of life, and eggs fertilized by sperm collected at day 5 had the highest hatching success. In any of the models, there was evidence for interactive effects of male and sperm age. Overall, these results confirm the role of pre-meiotic aging on male reproductive success. The lack of evidence for sperm aging could come from the experimental design but might also reflect the pattern of mating frequency in a species with a lek-based mating system.</p

    Pre-but not post-meiotic senescence affects sperm quality and reproductive success in the North African houbara bustard.

    No full text
    International audienceAge-dependent reduction in reproductive success can arise due to multiple factors including a deterioration of reproductive physiology. Senescing males have been shown to produce ejaculates with poor sperm quality, which impinges on male reproductive success. In addition to individual age, gamete age can also affect male reproductive success. Accordingly, variance in male reproductive success can be due to pre-meiotic (referring to individual age) and post-meiotic senescence (sperm age). Here, we tested whether male senescence and sperm cell aging have additive or interactive effects on male reproductive success in a bird with a promiscuous mating system, the North African houbara bustard. To assess the effect of pre-meiotic aging, we compared male reproductive success between two age classes (3-6- and 12–16-year-old). To infer the effect of post-meiotic aging, male ejaculates were collected at three-time intervals following a common initial collection (day 1, 5, and 10). Therefore, day 1 ejaculates are supposed to contain younger sperm than day 5 and 10 ejaculates. Following controlled artificial inseminations, reproductive success was assessed using three fitness-linked traits (hatching success, chick growth rate and survival). In addition to reproductive output, we also assessed whether pre- and post-meiotic aging affected a wide range of sperm and ejaculate traits. In agreement with previous reports, we found that males in the older age class produced less sperm with poorer motility compared to young individuals. However, contrary to the prediction, we found that ejaculates collected at day 5 and 10 tended to have better sperm traits such as motility and velocity. The results on sperm traits were generally mirrored in the effect on reproductive success since young males produced offspring that grew faster and had better survival during the first month of life, and eggs fertilized by sperm collected at day 5 had the highest hatching success. In any of the models, there was evidence for interactive effects of male and sperm age. Overall, these results confirm the role of pre-meiotic aging on male reproductive success. The lack of evidence for sperm aging could come from the experimental design but might also reflect the pattern of mating frequency in a species with a lek-based mating system

    The economic, medical and psychosocial consequences of whole genome sequencing for the genetic diagnosis of patients with intellectual disability: The DEFIDIAG study protocol

    No full text
    International audienceIntroduction: Like other countries, France has invested in a national medical genomics program. Among the four pilot research studies, the DEFIDIAG project focuses on the use of whole genome sequencing (WGS) for patients with intellectual disability (ID), a neurodevelopmental condition affecting 1–3% of the general population but due to a plethora of genes. However, the access to genomic analyses has many potential individual and societal issues in addition to the technical challenges. In order to help decision-makers optimally introduce genomic testing in France, there is a need to identify the socio-economic obstacles and leverages associated with the implementation of WGS. Methods and Analysis: This humanities and social sciences analysis is part of the DEFIDIAG study. The main goal of DEFIDIAG is to compare the percentage of causal genetic diagnoses obtained by trio WGS (including the patient and both parents) (WGS T ) to the percentage obtained using the minimal reference strategy currently used in France (Fragile-X testing, chromosomal microarray analysis, and gene panel strategy including 44 ID genes) for patients with ID having their first clinical genetics consultation. Additionally, four complementary studies will be conducted. First, a cost-effectiveness analysis will be undertaken in a subsample of 196 patients consulting for the first time for a genetic evaluation; in a blinded fashion, WGS T and solo (index case, only) genomic analysis (WGS S ) will be compared to the reference strategy. In addition, quantitative studies will be conducted: the first will estimate the cost of the diagnostic odyssey that could potentially be avoidable with first-line WGS T in all patients previously investigated in the DEFIDIAG study; the second will estimate changes in follow-up of the patients in the year after the return of the WGS T analysis compared to the period before inclusion. Finally, through semi-directive interviews, we will explore the expectations of 60 parents regarding genomic analyses. Discussion: Humanities and social sciences studies can be used to demonstrate the efficiency of WGS and assess the value that families associate with sequencing. These studies are thus expected to clarify trade-offs and to help optimize the implementation of genomic sequencing in France. Ethics Statement: The protocol was approved by the Ethics Committee Sud Méditerranée I (June 2019)—identification number: 2018-A00680-55 and the French data privacy commission (CNIL, authorization 919361). Clinical Trial Registration : ( ClinicalTrials.gov ), identifier (NCT04154891)

    Direct discovery of the inner exoplanet in the HD206893 system

    Get PDF
    Long term precise radial velocity (RV) monitoring of the nearby star HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. Here we describe the results of a multi-epoch search for the companion responsible for this RV drift and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we report a high significance detection of the companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with ∼ 50-100 μ arcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7 +1.2−1.0 M Jup and an orbital separation of 3.53 +0.08−0.06 au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 155±15 Myr. We find that theoretical atmospheric/evolutionary models incorporating deuterium burning for HD206893c, parameterized by cloudy atmospheres provide a good simultaneous fit to the luminosity of both HD206893B and c. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward to identify and characterize additional directly imaged planets. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form at ice-line orbital separations of 2-4\,au
    corecore