46 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π½Ρ– Π²ΠΊΠ°Π·Ρ–Π²ΠΊΠΈ Ρ– ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ– завдання Π· курсу "ВисокотСмпСратурні Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– установки"

    Get PDF
    ВисокотСмпСратурні процСси Ρ” основними Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΠΌΠΈ процСсами Π² ряді Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π², Ρ‚Π°ΠΊΠΈΡ…, як Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²ΠΎ коксу, Ρ‡Π°Π²ΡƒΠ½Ρƒ, сталі Ρ‚Π° ΠΊΠΎΠ»ΡŒΠΎΡ€ΠΎΠ²ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Ρ–Π², Π²ΠΈΠΏΠ°Π» ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Ρ– Π²ΠΎΠ³Π½Π΅Ρ‚Ρ€ΠΈΠ²Ρ–Π², Π²ΠΈΠΏΠ°Π» в’яТучих ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π², варіння скла, високотСмпСратурнС нагрівання Π·Π»ΠΈΡ‚ΠΊΡ–Π², отримання Π°Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚Ρƒ, фСросплавів Ρ‚Π° Ρ–Π½. Π£ процСсі вивчСння дисципліни «ВисокотСмпСратурні установки» (Π’Π’Π£) Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ освоїти ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ стану Π·Π»ΠΈΡ‚ΠΊΠ° Π² процСсі нагрівання, Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² Π½Π° ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρƒ, Π° Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Ρ– Π½Π° ΠΏΡ–Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½y Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ горіння. Π’ΠΌΡ–Ρ‚ΠΈ самостійно Π²ΠΈΠ±Ρ€Π°Ρ‚ΠΈ Π²ΠΎΠ³Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΊΡ– Ρ‚Π° ізоляційні ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ для ΠΏΠ΅Ρ‡Ρ– Π·Π°Π΄Π°Π½ΠΈΡ… Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² Ρ– Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΡƒΠΌΠΎΠ², скласти Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΠΉ баланс ΠΏΠ΅Ρ‡Ρ– Ρ– Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ Π³ΠΎΠ΄ΠΈΠ½Π½Ρƒ, сСкундну Ρ‚Π° ΠΏΠΈΡ‚ΠΎΠΌΡƒ Π²ΠΈΡ‚Ρ€Π°Ρ‚Ρƒ Π·Π°Π΄Π°Π½ΠΎΠ³ΠΎ Ρ– ΡƒΠΌΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°. Для Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΡ— соляної ΠΏΠ΅Ρ‡Ρ– Π· Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌ нагріванням Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ час Ρ€ΠΎΠ·Ρ–Π³Ρ€Ρ–Π²Ρƒ ΠΏΠ΅Ρ‡Ρ– Π· Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ стану ΠΏΡ€ΠΈ використанні Π² ΠΊΠ»Π°Π΄Ρ†Ρ– Ρ€Ρ–Π·Π½ΠΈΡ… Π²ΠΎΠ³Π½Π΅Ρ‚Ρ€ΠΈΠ²Ρ–Π². Зіставити Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Ρ– ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ Π΅Π½Π΅Ρ€Π³ΠΎΠ΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π·Π°Ρ…ΠΎΠ΄Ρ–Π². Усі завдання ΠΎΡ„ΠΎΡ€ΠΌΠ»ΡΡŽΡ‚ΡŒΡΡ Π½Π° Π°Ρ€ΠΊΡƒΡˆΠ°Ρ… Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρƒ А4 Π°Π±ΠΎ Π² ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… Π·ΠΎΡˆΠΈΡ‚Π°Ρ…

    Structure formation in active networks

    Full text link
    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics

    Collective dynamics of active cytoskeletal networks

    Get PDF
    Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsative collective long range dynamics. The reorganizations in the highly dynamic steady state of the active gel are characterized by alternating periods of runs and stalls resulting in a superdiffusive dynamics of the network's constituents. They are dominated by the complex competition of crosslinking molecules and motor filaments in the network: Collective dynamics are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. The feedback between structure formation and dynamics can be resolved by combining these experiments with phenomenological simulations based on simple interaction rules

    Thermal conduction in cosmological SPH simulations

    Full text link
    Thermal conduction in the intracluster medium has been proposed as a possible heating mechanism for offsetting central cooling losses in rich clusters of galaxies. In this study, we introduce a new formalism to model conduction in a diffuse ionised plasma using smoothed particle hydrodynamics (SPH), and we implement it in the parallel TreePM/SPH-code GADGET-2. We consider only isotropic conduction and assume that magnetic suppression can be described in terms of an effective conductivity, taken as a fixed fraction of the temperature-dependent Spitzer rate. We also account for saturation effects in low-density gas. Our formulation manifestly conserves thermal energy even for individual and adaptive timesteps, and is stable in the presence of small-scale temperature noise. This allows us to evolve the thermal diffusion equation with an explicit time integration scheme along with the ordinary hydrodynamics. We use a series of simple test problems to demonstrate the robustness and accuracy of our method. We then apply our code to spherically symmetric realizations of clusters, constructed under the assumptions of hydrostatic equilibrium and a local balance between conduction and radiative cooling. While we confirm that conduction can efficiently suppress cooling flows for an extended period of time in these isolated systems, we do not find a similarly strong effect in a first set of clusters formed in self-consistent cosmological simulations. However, their temperature profiles are significantly altered by conduction, as is the X-ray luminosity.Comment: 14 pages, 7 figures, accepted by MNRAS, high resolution version available at http://www.mpa-garching.mpg.de/~jubelgas/conduction.pdf. Fixed typos in eq. 20,22,2

    Morphological Multiscale Shape Analysis of Light Micrographs

    No full text
    Shape analysis of light--micrographs of cell populations is important for cytotoxicity evaluation. This paper presents a morphological method for quantitative analysis of shape deformations of cells in contact to a biomaterial. After illumination normalization, a morphological multiscale segmentation yields separated cells. Shape deformation, and hence, toxicity of the substance under scrutiny, is quantified by means of compactness distribution and pattern spectrum of the population. Since the logarithmic image model is applicable to transmitted light, illumination normalization is achieved by removing the illumination component from the log--image by a tophat transform utilizing a large reconstruction filter. Subsequent thresholding and noise filtering yields connected binary cells, which are segmented by a marker--based, multiscale approach. For this, size--specific marker scales are generated removing noise and false markers. Each cell is now represented by an isolated marker. Conve..
    corecore