436 research outputs found

    Cholinergic modulation of epileptiform activity in the developing rat neocortex

    Get PDF
    The effects of carbachol on picrotoxin-induced epileptiform activity and membrane properties of neurons in the developing rat neocortex were examined in an in vitro slice preparation. Intracellular recordings were obtained in layer II–III neurons of slices prepared from rats 9–21 days of age. Epileptiform activity in 9- to 14-day-olds consisted of a sharply rising, sustained (10–30 s) membrane depolarization with superimposed action potentials. Bath application of carbachol (5–50 μM) raised the threshold for evoking epileptiform activity but, when such responses were evoked, their underlying depolarizations were increased in amplitude. Orthodromic stimulation in slices from 15- to 21-day-old animals evoked a prolonged epileptiform burst response that triggered an episode of spreading depression (SD). Carbachol reduced epileptiform responses and suppressed the occurrence of SD. It did not significantly affect the resting membrane potential or the height of the action potential but decreased the rheobase current needed to evoke an action potential and increased the input resistance. All effects of carbachol were antagonized by atropine (1 μM). These results indicate that carbachol has both pre- and postsynaptic effects in the developing neocortex and can significantly modulate neuronal excitability in the immature nervous system

    Acetylcholine modifies neuronal acoustic rate-level functions in guinea pig auditory cortex by an action at muscarinic receptors

    Get PDF
    ABSTRACT Cholinergic modification of neuronal responsiveness in auditory cortex includes alteration of spontaneous and tone-evoked neuronal discharge. Previously it was suggested that the effects of acetylcholine (ACh) and muscarinic agonists on neuronal discharge resembled those due to increases in the intensity of acoustic stimuli Acet lcholine (ACh) modifies spontaneous and Often the effects of ACh result in systematic modification of the receptive field of the neuron (for recent reviews, see Ashe and Weinberger, 1990; Weinberger et evoke B discharge of neurons in sensory koniocortex. consist of a change in of responses to different frequencies of acoustic stimuli bethods of recordin single unit dischar e, acoustic logical agents used were similar to those previously reporte

    Donepezil enhances understanding of degraded speech in Alzheimer's disease

    Get PDF
    Alzheimer's Research UK. Grant Number: ART‐SRF2010‐3; Brain Research Trust; Wolfson Foundation; National Institute for Health Research University College London Hospitals Biomedical Research Centre. Grant Number: CBRC 161; UCL Leonard Wolfson Experimental Neurology Centre. Grant Number: PR/ylr/18575; Alzheimer's Society. Grant Number: AS‐PG‐16‐007; Wellcome Trust. Grant Number: 091673/Z/10/

    Thalamic Activation Modulates the Responses of Neurons in Rat Primary Auditory Cortex: An In Vivo Intracellular Recording Study

    Get PDF
    Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing

    Gamma band directional interactions between basal forebrain and visual cortex during wake and sleep states

    Get PDF
    The basal forebrain (BF) is an important regulator of cortical excitability and responsivity to sensory stimuli, and plays a major role in wake-sleep regulation. While the impact of BF on cortical EEG or LFP signals has been extensively documented, surprisingly little is known about LFP activity within BF. Based on bilateral recordings from rats in their home cage, we describe endogenous LFP oscillations in the BF during quiet wakefulness, rapid eye movement (REM) and slow wave sleep (SWS) states. Using coherence and Granger causality methods, we characterize directional influences between BF and visual cortex (VC) during each of these states. We observed pronounced BF gamma activity particularly during wakefulness, as well as to a lesser extent during SWS and REM. During wakefulness, this BF gamma activity exerted a directional influence on VC that was associated with cortical excitation. During SWS but not REM, there was also a robust directional gamma band influence of BF on VC. In all three states, directional influence in the gamma band was only present in BF to VC direction and tended to be regulated specifically within each brain hemisphere. Locality of gamma band LFPs to the BF was confirmed by demonstration of phase locking of local spiking activity to the gamma cycle. We report novel aspects of endogenous BF LFP oscillations and their relationship to cortical LFP signals during sleep and wakefulness. We link our findings to known aspects of GABAergic BF networks that likely underlie gamma band LFP activations, and show that the Granger causality analyses can faithfully recapitulate many known attributes of these networks

    Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons

    Full text link
    Intensity-tuned auditory cortex neurons may be formed by intensity-tuned synaptic excitation. Synaptic inhibition has also been shown to enhance, and possibly even create intensity-tuned neurons. Here we show, using in vivo whole cell recordings in pentobarbital-anesthetized rats, that some intensity-tuned neurons are indeed created solely through disproportionally large inhibition at high intensities, without any intensity-tuned excitation. Since inhibition is essentially cortical in origin, these neurons provide examples of auditory feature-selectivity arising de novo at the cortex.Comment: 22 pages, 5 figure

    Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    Get PDF
    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NAPV was supported by Centro Universitario do Rio Grande do Norte, Champalimaud Foundation, and Brazilian National Council for Scientific and Technological Development (CNPq, Grant 249991/2013-6), CC-S (SFRH/BD/51992/2012). AJR (IF/00883/2013). SR by UFRN, CNPq (Research Productivity Grant 308775/2015-5), and S. Paulo Research Foundation FAPESP - Center for Neuromathematics (Grant 2013/07699-0)info:eu-repo/semantics/publishedVersio

    Robust Off- and Online Separation of Intracellularly Recorded Up and Down Cortical States

    Get PDF
    BACKGROUND: The neuronal cortical network generates slow (<1 Hz) spontaneous rhythmic activity that emerges from the recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize the occurrence of up and down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings from different areas of the cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the method presented here is tested on data that departs from highly regular alternating up and down states. CONCLUSIONS/SIGNIFICANCE: We define a simple method to detect cortical states that can be applied in real time for offline processing of large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the study of cortical dynamics. An open-source MATLAB toolbox, and Spike 2-compatible version are made freely available
    corecore