497 research outputs found

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax

    Towards Graphene Nanoribbon-based Electronics

    Full text link
    The successful fabrication of single layer graphene has greatly stimulated the progress of the research on graphene. In this article, focusing on the basic electronic and transport properties of graphene nanoribbons (GNRs), we review the recent progress of experimental fabrication of GNRs, and the theoretical and experimental investigations of physical properties and device applications of GNRs. We also briefly discuss the research efforts on the spin polarization of GNRs in relation to the edge states.Comment: 9pages,10figure

    Wafer-scale synthesis and transfer of graphene films

    Full text link
    We developed means to produce wafer scale, high-quality graphene films as large as 3 inch wafer size on Ni and Cu films under ambient-pressure and transfer them onto arbitrary substrates through instantaneous etching of metal layers. We also demonstrated the applications of the large-area graphene films for the batch fabrication of field-effect transistor (FET) arrays and stretchable strain gauges showing extraordinary performances. Transistors showed the hole and electron mobilities of the device of 1,100 cm2/Vs and 550 cm2/Vs at drain bias of -0.75V, respectively. The piezo-resistance gauge factor of strain sensor was ~6.1. These methods represent a significant step toward the realization of graphene devices in wafer scale as well as application in optoelectronics, flexible and stretchable electronics.Comment: 18 page

    Regenerative oscillation and four-wave mixing in graphene optoelectronics

    Full text link
    The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-frequency optoelectronics, and all-optical signal processing.Comment: Accepted at Nature Photonics, July (2012

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Analysis of incidence and prognostic factors for ipsilateral breast tumour recurrence and its impact on disease-specific survival of women with node-negative breast cancer: a prospective cohort study

    Get PDF
    INTRODUCTION: This study had three aims: to establish the incidence of ipsilateral breast tumour recurrence (IBTR) in a community treatment setting, to evaluate known factors – in particular younger age (< 40 years) – predictive for local recurrence, and to assess the impact of local recurrence on disease-specific survival (DSS). METHODS: A consecutive series of 1,540 women with node-negative breast cancer, diagnosed between the ages of 18–75 years, were prospectively accrued between September 1987 and September 1999. All had undergone a resection of the primary breast cancer with clear margins, an axillary lymph node dissection with a minimum of four sampled nodes, and breast-conserving surgery (of any type). RESULTS: During the study follow-up period, 98 (6.4%) IBTRs and 117 (7.6%) deaths from or with breast cancer were observed. The median time to IBTR was 3.1 years and to death from or with disease was 4.3 years. In the multivariate Cox proportional hazards (PH) regression model for IBTR with adjuvant therapy factors, independent risk factors included age < 40 years (relative risk (RR) = 1.89, 95% confidence interval (CI) of 1.00 – 3.58), presence of intraductal disease (RR = 1.81, 95% CI = 1.15–2.85) and histological grade ('G2' or G3 versus G1: RR = 1.59, 95% CI = 0.87–2.94). In the multivariate Cox PH regression model for DSS with adjuvant therapy factors, independent risk factors included previous IBTR (RR = 2.58, 95% CI = 1.41–4.72), tumor size (1–2 cm versus < 1 cm: RR = 1.95, 95% CI = 1.05–3.64, > 2 cm versus < 1 cm: RR = 2.94, 95% CI = 1.56–5.56), progesterone receptor status (negative or equivocal versus positive or unknown: RR = 2.15, 95% CI = 1.36–3.39), lymphatic invasion (RR = 1.78, 95% CI = 1.17–2.72), and histological grade ('G2' or G3 versus G1: RR = 8.59, 95% CI = 2.09–35.36). The effects of competing risks could be ignored. CONCLUSION: The Cox PH analyses confirmed the importance of known risk factors for IBTR and DSS in a community treatment setting. This study also revealed that the early occurrence of an IBTR is associated with a relatively poor five-year survival rate

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Inactivation of respiratory syncytial virus by zinc finger reactive compounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (<it>Pneumoviridae</it>), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein. Moreover, inactivation of RSV through modification of an internal protein could yield a safer whole virus vaccine than that produced by RSV inactivation with formalin which modifies surface proteins.</p> <p>Results</p> <p>Three compounds were evaluated for their ability to reduce RSV infectivity: 2,2'-dithiodipyridine (AT-2), tetraethylthiuram disulfide and tetramethylthiuram disulfide. All three were capable of inactivating RSV, with AT-2 being the most potent. The mechanism of action of AT-2 was analyzed and it was found that AT-2 treatment indeed results in the modification of RSV M2-1. Altered intramolecular disulfide bond formation in M2-1 protein of AT-2-treated RSV virions might have been responsible for abrogation of RSV infectivity. AT-2-inactivated RSV was found to be moderately immunogenic in the cotton rats <it>S.hispidus </it>and did not cause a vaccine-enhancement seen in animals vaccinated with formalin-inactivated RSV. Increasing immunogenicity of AT-2-inactivated RSV by adjuvant (Ribi), however, led to vaccine-enhanced disease.</p> <p>Conclusions</p> <p>This work presents evidence that compounds that inactivate retroviruses by targeting the zinc finger motif in their nucleocapsid proteins are also effective against RSV. AT-2-inactivated RSV vaccine is not strongly immunogenic in the absence of adjuvants. In the adjuvanted form, however, vaccine induces immunopathologic response. The mere preservation of surface antigens of RSV, therefore may not be sufficient to produce a highly-efficacious inactivated virus vaccine that does not lead to an atypical disease.</p

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore