274 research outputs found
Nonlinear atom-optical delta-kicked harmonic oscillator using a Bose-Einstein condensate
We experimentally investigate the atom-optical delta-kicked harmonic
oscillator for the case of nonlinearity due to collisional interactions present
in a Bose-Einstein condensate. A Bose condensate of rubidium atoms tightly
confined in a static harmonic magnetic trap is exposed to a one-dimensional
optical standing-wave potential that is pulsed on periodically. We focus on the
quantum anti-resonance case for which the classical periodic behavior is simple
and well understood. We show that after a small number of kicks the dynamics is
dominated by dephasing of matter wave interference due to the finite width of
the condensate's initial momentum distribution. In addition, we demonstrate
that the nonlinear mean-field interaction in a typical harmonically confined
Bose condensate is not sufficient to give rise to chaotic behavior.Comment: 4 pages, 3 figure
e-Social Science and Evidence-Based Policy Assessment : Challenges and Solutions
Peer reviewedPreprin
Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry
In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2
Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps
We study the dynamics of nonlinear localized excitations (solitons) in
two-dimensional (2D) Bose-Einstein condensates (BECs) with repulsive
interactions, loaded into an optical lattice (OL), which is combined with an
external parabolic potential. First, we demonstrate analytically that a broad
(loosely bound, LB) soliton state, based on a 2D Bloch function near the edge
of the Brillouin zone (BZ), has a negative effective mass (while the mass of a
localized state is positive near the BZ center). The negative-mass soliton
cannot be held by the usual trap, but it is safely confined by an inverted
parabolic potential (anti-trap). Direct simulations demonstrate that the LB
solitons (including the ones with intrinsic vorticity) are stable and can
freely move on top of the OL. The frequency of elliptic motion of the
LB-soliton's center in the anti-trapping potential is very close to the
analytical prediction which treats the solition as a quasi-particle. In
addition, the LB soliton of the vortex type features real rotation around its
center. We also find an abrupt transition, which occurs with the increase of
the number of atoms, from the negative-mass LB states to tightly bound (TB)
solitons. An estimate demonstrates that, for the zero-vorticity states, the
transition occurs when the number of atoms attains a critical number N=10^3,
while for the vortex the transition takes place at N=5x10^3 atoms. The
positive-mass LB states constructed near the BZ center (including vortices) can
move freely too. The effects predicted for BECs also apply to optical spatial
solitons in bulk photonic crystals.Comment: 17 pages, 12 figure
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: A case study of reintroduced red kites
Analysis of satellite-telemetry data mostly occurs long after it has been collected, due to the time and effort needed to collate and interpret such material. Such delayed reporting does reduce the usefulness of such data for nature conservation when timely information about animal movements is required. To counter this problem we present a novel approach which combines automated analysis of satellite-telemetry data with rapid communication of insights derived from such data. A relatively simple algorithm (comprising speed of movement and turning angle calculated from fixes), allowed instantaneous detection of excursions away from settlement areas and automated calculation of home ranges on the remaining data Automating the detection of both excursions and home range calculations enabled us to disseminate ecological insights from satellite-tag data instantaneously through a dedicated web portal to inform conservationists and wider audiences. We recommend automated analysis, interpretation and communication of satellite tag and other ecological data to advance nature conservation research and practice
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
Positioning discourse on homophobia in schools: What have lesbian and gay families got to say?
This paper reports findings from a study in England, which investigated the experiences of lesbian and gay parents in relation to homophobia in primary and secondary schools. The study was part of a larger European Union project investigating the impact of family and school alliances against homophobic and transphobic bullying in schools across six nation states. Qualitative in-depth semi-structured interviews with seven lesbian and gay parents from five families were conducted to explore their unique experience and perspectives on these issues. Discourse analysis was used to facilitate understanding of how lesbian and gay families negotiated the outsider/insider and public/private spheres of the school and communities of which they were a part. Parents identified a number of strategies to address their experiences of homophobia within schools. The findings have implications for how social work recognises and promotes diversity and equality when working with lesbian, gay, bisexual and transgender families, as social workers have a powerful role in supporting families. This involves recognising the strengths of lesbian, gay, bisexual and transgender families in their assessments
Positioning discourse on homophobia in schools: what have lesbian and gay families got to say?
This paper reports findings from a study in England, which investigated the experiences of lesbian and gay parents in relation to homophobia in primary and secondary schools. The study was part of a larger European Union project investigating the impact of family and school alliances against homophobic and transphobic bullying in schools across six nation states. Qualitative in-depth semi-structured interviews with seven lesbian and gay parents from five families were conducted to explore their unique experience and perspectives on these issues. Discourse analysis was used to facilitate understanding of how lesbian and gay families negotiated the outsider/insider and public/private spheres of the school and communities of which they were a part. Parents identified a number of strategies to address their experiences of homophobia within schools. The findings have implications for how social work recognises and promotes diversity and equality when working with lesbian, gay, bisexual and transgender families, as social workers have a powerful role in supporting families. This involves recognising the strengths of lesbian, gay, bisexual and transgender families in their assessments
- …