44 research outputs found

    Chronic Murine Typhoid Fever Is a Natural Model of Secondary Hemophagocytic Lymphohistiocytosis

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a hyper-inflammatory clinical syndrome associated with neoplastic disorders especially lymphoma, autoimmune conditions, and infectious agents including bacteria, viruses, protozoa and fungi. In both human and veterinary medicine, hemophagocytic histiocytic disorders are clinically important and frequently fatal. HLH in humans can be a primary (familial, autosomal recessive) or secondary (acquired) condition, with both types generally precipitated by an infectious agent. Previously, no mouse model for secondary HLH has been reported. Using Salmonella enterica serotype Typhimurium by oral gavage to mimic naturally-occurring infection in Sv129S6 mice, we characterized the clinical, hematologic and morphologic host responses to disease thereby describing an animal model with the clinico-pathologic features of secondary HLH as set forth by the Histiocyte Society: fever, splenomegaly, cytopenias (anemia, thrombocytopenia), hemophagocytosis in bone marrow and spleen, hyperferritinemia, and hypofibrinogenemia. Disease severity correlates with high splenic and hepatic bacterial load, and we show disease course can be monitored and tracked in live animals. Whereby secondary HLH is known to occur in human patients with typhoid fever and other infectious diseases, our characterization of a viable natural disease model of secondary HLH offers an important means to elucidate pathogenesis of poorly understood mechanisms of secondary HLH and investigation of novel therapies. We characterize previously unreported secondary HLH in a chronic mouse model of typhoid fever, and novel changes in hematology including decreased tissue ferric iron storage that differs from classically described anemia of chronic disease. Our studies demonstrate S. Typhimurium infection of mice is a natural infectious disease model of secondary HLH that may have utility for elucidating disease pathogenesis and developing novel therapies

    Carbohydrate Recognition by an Architecturally Complex α-N-Acetylglucosaminidase from Clostridium perfringens

    Get PDF
    CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation

    The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1

    Get PDF
    Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    <i>S.</i> Typhimurium-infected mice have tissue inflammation and thrombosis, increased hematopoiesis, and decreased splenic iron.

    No full text
    <p>(A) Mouse liver, 6 weeks post-infection; inflammation and necrosis (arrow). (B) Mouse spleen, 3 weeks post-infection; extramedullary hematopoiesis (EMH; arrow, megakaryocytes), histiocytic infiltration (I) throughout the red pulp, and thrombus (T). H&E stain (A, B). (C) Spleen, mock-infected (left) and infected mouse (right), 3 weeks post-infection; markedly decreased ferric iron staining in red pulp. (D) Spleen, mock-infected (left) and infected mouse (right), 6 weeks post-infection; markedly decreased splenic ferric iron in red pulp. Perl's Prussian Blue stain (C, D). (E) Hemophagocytic macrophage in mouse spleen 3 weeks post-infection that had 10-fold more macrophages and 43-fold more 6N+ macrophages than control mouse spleen. CD11b (red), DAPI (blue), TER119 (green). N  =  endogenous macrophage nucleus, E1  =  nucleated erythrocyte, E2  =  non-nucleated erythrocyte. Confocal fluorescent micrograph. (F) Representative histogram overlay of TER119 expression on DAPI+ splenocytes from a mock-infected (red) and infected mouse (blue) 3 weeks post-infection. Filled gray histogram corresponds to the isotype control. The infected mouse had 11.5-fold more TER119<sup>med</sup> pro-erythroblasts and 5.5-fold more TER119<sup>high</sup> erythroblasts than the mock-infected mouse. (G) Mean numbers of TER119<sup>med</sup> and TER119<sup>high</sup> splenocytes from three mock-infected (white bars) and four infected (gray bars) mice. Mean number of TER119<sup>med</sup> pro-erythroblasts per spleen increased 6.8-fold in infected mice, while the mean number of TER119<sup>high</sup> cells, corresponding to all nucleated erythroblasts subsequent to the pro-erythroblast stage <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009441#pone.0009441-Socolovsky1" target="_blank">[40]</a>, increased 3.6-fold. (<i>P</i><0.05) Error bars = SD. Original magnifications 100× (A–B), 200× (C–D), and 1000× (E).</p

    Hematology of <i>S.</i> Typhimurium-infected mice: acute, then chronic active inflammatory response; microcytic anemia, persistent microcytosis.

    No full text
    <p>Mice were orally gavaged with 9.1×10<sup>8</sup> CFU of <i>S</i>. Typhimurium (n = 8) or sterile PBS (n = 7). Complete blood counts were monitored over 16 weeks. X  =  <i>S</i>. Typhimurium-infected mice; circle  =  mock-infected control mice. Mean and standard deviation are shown. (A) neutrophils, (B) monocytes, (C) lymphocytes, (D) hematocrit (HCT), (E) mean cell volume (MCV). *<i>P</i><0.05 (Student's <i>t</i>-test).</p
    corecore