9 research outputs found

    Right ventricular outflow tract endocardial unipolar substrate mapping: implications in risk stratification of Brugada syndrome

    Get PDF
    Brugada syndrome (BrS) is a complex arrhythmogenic disease displaying electrical and micro-structural abnormalities mainly located at the epicardium of the right ventricular outflow tract (RVOT). It is well-known that fibrosis, fatty infiltration, inflammation and reduced gap junction expression have been demonstrated at the epicardial anterior aspect of the RVOT providing the arrhythmogenic substrate for ventricular arrhythmic events in BrS. A number of models have been proposed for the risk stratification of patients with BrS. Endocardial unipolar electroanatomical mapping is an emerging tool that has been reintroduced to identify and quantify epicardial electrical abnormalities. Interestingly, current findings correlate the presence of large-sized endocardial unipolar electroanatomical abnormalities with either ventricular fibrillation inducibility during programmed ventricular stimulation or symptom status. This review aims to present existing data about the role of endocardial unipolar electroanatomical mapping for the identification of RVOT epicardial abnormalities as well as its potential clinical implications in risk stratification of BrS

    Estimation of personalized minimal Purkinje systems from human electro-anatomical maps

    Get PDF
    The Purkinje system is a heart structure responsible for transmitting electrical impulses through the ventricles in a fast and coordinated way to trigger mechanical contraction. Estimating a patient-specific compatible Purkinje Network from an electro-anatomical map is a challenging task, that could help to improve models for electrophysiology simulations or provide aid in therapy planning, such as radiofrequency ablation. In this study, we present a methodology to inversely estimate a Purkinje network from a patient's electro-anatomical map. First, we carry out a simulation study to assess the accuracy of the method for different synthetic Purkinje network morphologies and myocardial junction densities. Second, we estimate the Purkinje network from a set of 28 electro-anatomical maps from patients, obtaining an optimal conduction velocity in the Purkinje network of 1.95 ± 0.25 m/s, together with the location of their Purkinje-myocardial junctions, and Purkinje network structure. Our results showed an average local activation time error of 6.8±2.2 ms in the endocardium. Finally, using the personalized Purkinje network, we obtained correlations higher than 0.85 between simulated and clinical 12-lead ECGs

    Right ventricular outflow tract endocardial unipolar substrate mapping: implications in risk stratification of Brugada syndrome

    Get PDF
    Brugada syndrome (BrS) is a complex arrhythmogenic disease displaying electrical and micro-structural abnormalities mainly located at the epicardium of the right ventricular outflow tract (RVOT). It is well-known that fibrosis, fatty infiltration, inflammation and reduced gap junction expression have been demonstrated at the epicardial anterior aspect of the RVOT providing the arrhythmogenic substrate for ventricular arrhythmic events in BrS. A number of models have been proposed for the risk stratification of patients with BrS. Endocardial unipolar electroanatomical mapping is an emerging tool that has been reintroduced to identify and quantify epicardial electrical abnormalities. Interestingly, current findings correlate the presence of large-sized endocardial unipolar electroanatomical abnormalities with either ventricular fibrillation inducibility during programmed ventricular stimulation or symptom status. This review aims to present existing data about the role of endocardial unipolar electroanatomical mapping for the identification of RVOT epicardial abnormalities as well as its potential clinical implications in risk stratification of BrS. [Abstract copyright: © 2022 The Author(s). Published by IMR Press.

    Right ventricular outflow tract electroanatomical abnormalities in asymptomatic and high-risk symptomatic patients with Brugada syndrome: Evidence for a new risk stratification tool?

    No full text
    Introduction: Microstructural abnormalities at the epicardium of the right ventricular outflow tract (RVOT) may provide the arrhythmia substrate in Brugada syndrome (BrS). Endocardial unipolar electroanatomical mapping allows the identification of epicardial abnormalities. We evaluated the clinical implications of an abnormal endocardial substrate as perceived by high-density electroanatomical mapping (HDEAM) in patients with BrS. Methods: Fourteen high-risk BrS patients with aborted sudden cardiac death (SCD) (12 males, mean age: 41.9 ± 11.8 years) underwent combined endocardial-epicardial HDEAM of the right ventricle/RVOT, while 40 asymptomatic patients (33 males, mean age: 42 ± 10.7 years) underwent endocardial HDEAM. Based on combined endocardial-epicardial procedures, endocardial HDEAM was considered abnormal in the presence of low voltage areas (LVAs) more than 1 cm2 with bipolar signals less than 1 mV and unipolar signals less than 5.3 mV. Programmed ventricular stimulation (PVS) was performed in all patients. Results: The endocardial unipolar LVAs were colocalized with epicardial bipolar LVAs (p = .0027). Patients with aborted SCD exhibited significantly wider endocardial unipolar (p < .01) and bipolar LVAs (p < .01) compared with asymptomatic individuals. A substrate size of unipolar LVAs more than 14.5 cm2 (area under the curve [AUC]: 0.92, p < .001] and bipolar LVAs more than 3.68 cm2 (AUC: 0.82, p = .001) distinguished symptomatic from asymptomatic patients. Patients with ventricular fibrillation inducibility (23/54) demonstrated broader endocardial unipolar (p < .001) and bipolar LVAs (p < .001) than noninducible patients. The presence of unipolar LVAs more than 13.5 cm2 (AUC: 0.95, p < .001) and bipolar LVAs more than 2.97 cm2 (AUC: 0.78, p < .001) predicted a positive PVS. Conclusion: Extensive endocardial electroanatomical abnormalities identify high-risk patients with BrS. Endocardial HDEAM may allow risk stratification of asymptomatic patients referred for PVS

    III. ABTEILUNG. BIBLIOGRAPHISCHE NOTIZEN UND MITTEILUNGEN

    No full text

    C. Literaturwissenschaft.

    No full text
    corecore