11 research outputs found
Dynamics of collective modes in an unconventional charge density wave system BaNi2As2
BaNi 2As 2 is a non-magnetic analogue of BaFe2 As2 , the parent compound of a prototype
pnictide high-temperature superconductor, displaying superconductivity already at ambient
pressure. Recent diffraction studies demonstrated the existence of two types of periodic
lattice distortions above and below the triclinic phase transition, suggesting the existence of
an unconventional charge-density-wave (CDW) order. The suppression of CDW order upon
doping results in a sixfold increase in the superconducting transition temperature and
enhanced nematic fluctuations, suggesting CDW is competing with superconductivity. Here,
we apply time-resolved optical spectroscopy to investigate collective dynamics in BaNi 2 As 2.
We demonstrate the existence of several CDW amplitude modes. Their smooth evolution
through the structural phase transition implies the commensurate CDW order in the triclinic
phase evolves from the high-temperature unidirectional incommensurate CDW, and may
indeed trigger the structural phase transition. Excitation density dependence reveals excep-
tional resilience of CDW against perturbation, implying an unconventional origin of the
underlying electronic instability
Selective dynamical imaging of interferometric data
Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon
Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The
sparse nature of the EHT’s (u, v)-coverage presents a challenge when attempting to resolve highly time-variable
sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course
of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected
baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of
coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their
ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature
and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT
observations of sources with simple orbital variability. We then use these results to make recommendations for
imaging the 2017 EHT Sgr A* data sethttp://iopscience.iop.org/2041-8205Physic
Selective Dynamical Imaging of Interferometric Data
Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set
Selective Dynamical Imaging of Interferometric Data
Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set
Selective Dynamical Imaging of Interferometric Data
International audienceRecent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set