881 research outputs found
The Point of Origin of the Radio Radiation from the Unresolved Cores of Radio-Loud Quasars
Locating the exact point of origin of the core radiation in active galactic
nuclei (AGN) would represent important progress in our understanding of
physical processes in the central engine of these objects. However, due to our
inability to resolve the region containing both the central compact object and
the jet base, this has so far been difficult. Here, using an analysis in which
the lack of resolution does not play a significant role, we demonstrate that it
may be impossible even in most radio loud sources for more than a small
percentage of the core radiation at radio wavelengths to come from the jet
base. We find for 3C279 that percent of the core flux at 15 GHz must
come from a separate, reasonably stable, region that is not part of the jet
base, and that then likely radiates at least quasi-isotropically and is
centered on the black hole. The long-term stability of this component also
suggests that it may originate in a region that extends over many Schwarzschild
radii.Comment: 7 pages with 3 figures, accepted for publication in Astrophysics and
Space Scienc
Training for interdisciplinary health research defining the required competencies
Although interdisciplinary research is becoming the dominant model for understanding complex health issues, little is known about the competencies required for successful interdisciplinary collaboration. Published research has discussed attitudes about interdisciplinary work and organizational resources but not the needed competencies. This report describes the method and results of the competency specification process for health research. Based on an established definition of interdisciplinary research, a preliminary set of competencies was developed from expert opinion of key informants and a review of the interdisciplinary research literature. A Delphi panel of interdisciplinary researchers then reached consensus on 17 competencies necessary for interdisciplinary research
Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA
This paper is not subject to U.S. copyright.
The definitive version was published in Sedimentology 53 (2006): 1211-1228, doi:10.1111/j.1365-3091.2006.00809.x.Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.This study was supported by the Coastal and
Marine Geology Program, and the Earthquake
Hazards Program of the U.S. Geological Survey
The composition of the protosolar disk and the formation conditions for comets
Conditions in the protosolar nebula have left their mark in the composition
of cometary volatiles, thought to be some of the most pristine material in the
solar system. Cometary compositions represent the end point of processing that
began in the parent molecular cloud core and continued through the collapse of
that core to form the protosun and the solar nebula, and finally during the
evolution of the solar nebula itself as the cometary bodies were accreting.
Disentangling the effects of the various epochs on the final composition of a
comet is complicated. But comets are not the only source of information about
the solar nebula. Protostellar disks around young stars similar to the protosun
provide a way of investigating the evolution of disks similar to the solar
nebula while they are in the process of evolving to form their own solar
systems. In this way we can learn about the physical and chemical conditions
under which comets formed, and about the types of dynamical processing that
shaped the solar system we see today.
This paper summarizes some recent contributions to our understanding of both
cometary volatiles and the composition, structure and evolution of protostellar
disks.Comment: To appear in Space Science Reviews. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
Return to play and risk of repeat concussion in collegiate football players: Comparative analysis from the NCAA Concussion Study (1999-2001) and CARE Consortium (2014-2017)
Objective We compared data from the National Collegiate Athletic Association (NCAA) Concussion Study (1999-2001) and the NCAA-Department of Defense Concussion Assessment, Research and Education (CARE) Consortium (2014-2017) to examine how clinical management, return to play (RTP) and risk of repeat concussion in collegiate football players have changed over the past 15 years. Methods We analysed data on reported duration of symptoms, symptom-free waiting period (SFWP), RTP and occurrence of within-season repeat concussion in collegiate football players with diagnosed concussion from the NCAA Study (n=184) and CARE (n=701). Results CARE athletes had significantly longer symptom duration (CARE median=5.92 days, IQR=3.02-9.98 days; NCAA median=2.00 days, IQR=1.00-4.00 days), SFWP (CARE median=6.00 days, IQR=3.49-9.00 days; NCAA median=0.98 days, IQR=0.00-4.00 days) and RTP (CARE median=12.23 days, IQR=8.04-18.92 days; NCAA median=3.00 days, IQR=1.00-8.00 days) than NCAA Study athletes (all p<0.0001). In CARE, there was only one case of repeat concussion within 10 days of initial injury (3.7% of within-season repeat concussions), whereas 92% of repeat concussions occurred within 10 days in the NCAA Study (p<0.001). The average interval between first and repeat concussion in CARE was 56.41 days, compared with 5.59 days in the NCAA Study (M difference=50.82 days; 95% CI 38.37 to 63.27; p<0.0001). Conclusion Our findings indicate that concussion in collegiate football is managed more conservatively than 15 years ago. These changes in clinical management appear to have reduced the risk of repetitive concussion during the critical period of cerebral vulnerability after sport-related concussion (SRC). These data support international guidelines recommending additional time for brain recovery before athletes RTP after SRC
SPECTRA OF YOUNG GALAXIES
Invited review, Ringberg conference on "Galaxies in the Young Universe"
(Sept94)Comment: 12 pages, uuencoded compressed Postscript fil
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Serum creatinine and cystatin C-based estimates of glomerular filtration rate are misleading in acute heart failure
AIMS: We aimed to test whether the endogenous filtration markers serum creatinine or cystatin C and equation-based estimates of glomerular filtration rate (GFR) based on these markers appropriately reflect changes of measured GFR in patients with acute heart failure. METHODS: In this prospective cohort study of 50 hospitalized acute heart failure patients undergoing decongestive therapy, we applied an intravenous visible fluorescent injectate (VFI), consisting of a low molecular weight component to measure GFR and a high molecular weight component to correct for measured plasma volume. Thirty-eight patients had two sequential GFR measurements 48 h apart. The co-primary endpoints of the study were safety of VFI and plasma stability of the high molecular weight component. A key secondary endpoint was to compare changes in measured GFR (mGFR) to changes of serum creatinine, cystatin C and estimated GFR. RESULTS: VFI-based GFR measurements were safe and consistent with plasma stability of the high molecular weight component and glomerular filtration of the low molecular weight component. Filtration marker-based point estimates of GFR, when compared with mGFR, provided only moderate correlation (Pearson's r, range 0.80-0.88, depending on equation used), precision (r(2) , range 0.65-0.78) and accuracy (56%-74% of estimates scored within 30% of mGFR). Correlations of 48-h changes GFR estimates and changes of mGFR were significant (P 15% decrease in mGFR. CONCLUSIONS: In patients hospitalized for acute heart failure, serum creatinine- and cystatin C-based predictions performed poorly in detecting actual changes of GFR. These data challenge current clinical strategies to evaluate dynamics of kidney function in acute heart failure
Discordance between estimated and measured changes in plasma volume among patients with acute heart failure
AIMS: In acute heart failure (AHF), changes of venous haemoglobin (Hb) concentrations, haematocrit (Hct), and estimated plasma volume (ePV) have been proposed as surrogates of decongestion. These estimates are based on the theoretical assumptions that changes of Hb concentrations and Hct are driven by the intravascular volume status and that the intravascular Hb pool remains stable. The objective of this study was to assess the relationship of changes of measured plasma volume (mPV) with changes of Hb, Hct, and ePV in AHF. METHODS AND RESULTS: We studied 36 AHF patients, who received two sequential assessments of mPV, measured red cell volume (mRCV) and measured total blood volume (mTBV) (48 h apart), during the course of diuretic therapy using a novel visible fluorescent injectate (VFI) technique based on the indicator dilution principle. Changes of ePV were calculated based on the Kaplan–Hakim or Strauss formula. AHF patients receiving diuretics (median intravenous furosemide equivalent 160 mg/48 h) displayed a wide range of changes of mPV (−25.4% to +37.0%). Changes in mPV were not significantly correlated with changes of Hb concentration [Pearson's r (r) = −0.241, P = 0.157], Hct (r = −0.307, P = 0.069), ePVKaplan–Hakim (r = 0.228, P = 0.182), or ePVStrauss (r = 0.237, P = 0.163). In contrast to theoretical assumptions, changes of mTBV were poorly correlated with changes of Hb concentrations and some patients displayed unanticipated variability of mRCV, suggesting an unstable intravascular red cell pool. CONCLUSIONS: Changes of Hb or Hct were not reflective of directly measured changes of intravascular volume status in AHF patients. Basing clinical assessment of decongestion on changes of Hb or Hct may misguide clinical decision-making on an individual patient level
- …