1,660 research outputs found

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproducibility is a fundamental requirement in scientific experiments. Some recent publications have claimed that microarrays are unreliable because lists of differentially expressed genes (DEGs) are not reproducible in similar experiments. Meanwhile, new statistical methods for identifying DEGs continue to appear in the scientific literature. The resultant variety of existing and emerging methods exacerbates confusion and continuing debate in the microarray community on the appropriate choice of methods for identifying reliable DEG lists.</p> <p>Results</p> <p>Using the data sets generated by the MicroArray Quality Control (MAQC) project, we investigated the impact on the reproducibility of DEG lists of a few widely used gene selection procedures. We present comprehensive results from inter-site comparisons using the same microarray platform, cross-platform comparisons using multiple microarray platforms, and comparisons between microarray results and those from TaqMan – the widely regarded "standard" gene expression platform. Our results demonstrate that (1) previously reported discordance between DEG lists could simply result from ranking and selecting DEGs solely by statistical significance (<it>P</it>) derived from widely used simple <it>t</it>-tests; (2) when fold change (FC) is used as the ranking criterion with a non-stringent <it>P</it>-value cutoff filtering, the DEG lists become much more reproducible, especially when fewer genes are selected as differentially expressed, as is the case in most microarray studies; and (3) the instability of short DEG lists solely based on <it>P</it>-value ranking is an expected mathematical consequence of the high variability of the <it>t</it>-values; the more stringent the <it>P</it>-value threshold, the less reproducible the DEG list is. These observations are also consistent with results from extensive simulation calculations.</p> <p>Conclusion</p> <p>We recommend the use of FC-ranking plus a non-stringent <it>P </it>cutoff as a straightforward and baseline practice in order to generate more reproducible DEG lists. Specifically, the <it>P</it>-value cutoff should not be stringent (too small) and FC should be as large as possible. Our results provide practical guidance to choose the appropriate FC and <it>P</it>-value cutoffs when selecting a given number of DEGs. The FC criterion enhances reproducibility, whereas the <it>P </it>criterion balances sensitivity and specificity.</p

    cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS: We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARgamma2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-kappaB Ligand to Osteoprotegerin (RANKL/OPG) gene expression - the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish. CONCLUSIONS: Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression

    Systematic assessment of long-read RNA-seq methods for transcript identification and quantification

    Get PDF
    The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis

    Assessment of gene-by-sex interaction effect on bone mineral density

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p < 1 × 10(-5) ) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 and p = 3.0 × 10(-5) ; female effect = -0.007 and p = 3.3 × 10(-2) ), and 11 suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (p < 5 × 10(-8) ) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found to influence BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. © 2012 American Society for Bone and Mineral Research.Medtronic NIH R01 AG18728 R01HL088119 R01AR046838 U01 HL084756 R01 AR43351 P01-HL45522 R01-MH-078111 R01-MH-083824 Nutrition and Obesity Research Center of Maryland P30DK072488 NIAMS/NIH F32AR059469 Instituto de Salud Carlos III-FIS (Spanish Health Ministry) PI 06/0034 PI08/0183 Canadian Institutes of Health Research (CIHR) NHLBI HHSN268201200036C N01-HC-85239 N01-HC-85079 N01-HC-85086 N01-HC-35129 N01 HC15103 N01 HC-55222 N01-HC-75150 N01-HC-45133 HL080295 HL087652 HL105756 NIA AG-023629 AG-15928 AG-20098 AG-027058 N01AG62101 N01AG62103 N01AG62106 1R01AG032098-01A1 National Center of Advancing Translational Technologies CTSI UL1TR000124 National Institute of Diabetes and Digestive and Kidney Diseases DK063491 EUROSPAN (European Special Populations Research Network) European Commission FP6 STRP grant 018947 LSHG-CT-2006-01947 Netherlands Organisation for Scientific Research Erasmus MC Centre for Medical Systems Biology (CMSB) Netherlands Brain Foundation (HersenStichting Nederland) US National Institute for Arthritis, Musculoskeletal and Skin Diseases National Institute on Aging R01 AR/AG41398 R01 AR050066 R21 AR056405 National Heart, Lung, and Blood Institute's Framingham Heart Study N01-HC-25195 Affymetrix, Inc. N02-HL-6-4278 Canadian Institutes of Health Research from Institute of Aging 165446 Institute of Genetics 179433 Institute of Musculoskeletal health 221765 Intramural Research Program of the NIH, National Institute on Aging National Institutes of Health HHSN268200782096C Hong Kong Research Grant Council HKU 768610M Bone Health Fund of HKU Foundation KC Wong Education Foundation Small Project Funding 201007176237 Matching Grant CRCG Grant Osteoporosis and Endocrine Research Fund Genomics Strategic Research Theme of The University of Hong Kong Netherlands Organisation of Scientific Research NWO Investments 175.010.2005.011 911-03-012 Research Institute for Diseases in the Elderly 014-93-015 Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) 050-060-810 Erasmus Medical Center and Erasmus University, Rotterdam Netherlands Organization for the Health Research and Development (ZonMw) Research Institute for Diseases in the Elderly (RIDE) Ministry of Education, Culture and Science Ministry for Health, Welfare and Sports European Commission (DG XII) Municipality of Rotterdam German Bundesministerium fur Forschung und Technology 01 AK 803 A-H 01 IG 07015

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity
    corecore