22 research outputs found

    Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition

    Get PDF
    Visual metacognition depends on regions within the prefrontal cortex. Two areas in particular have been repeatedly implicated: the dorsolateral prefrontal cortex (DLPFC) and the anterior prefrontal cortex (aPFC). However, it is still unclear what the function of each of these areas is and how they differ from each other. To establish the specific roles of DLPFC and aPFC in metacognition, we employed online transcranial magnetic stimulation (TMS) to causally interfere with their functioning during confidence generation. Human subjects from both sexes performed a perceptual decision-making task and provided confidence ratings. We found a clear dissociation between the two areas: DLPFC TMS lowered confidence ratings, whereas aPFC TMS increased metacognitive ability but only for the second half of the experimental blocks. These results support a functional architecture where DLPFC reads out the strength of the sensory evidence and relays it to aPFC, which makes the confidence judgement by potentially incorporating additional, non-perceptual information. Indeed, simulations from a model that incorporates these putative DLPFC and aPFC functions reproduced our behavioral results. These findings establish DLPFC and aPFC as distinct nodes in a metacognitive network and suggest specific contributions from each of these regions to confidence generation.M.S

    How do humans give confidence? Comparing popular process models of confidence generation

    Get PDF
    Humans have the metacognitive ability to assess the likelihood of their decisions being correct via estimates of confidence. Several theories have attempted to model the computational mechanisms that generate confidence. Yet, due to little work directly comparing these models using the same data, there is no consensus among these theories. Here, we compare twelve popular process models by fitting them to large datasets from two experiments in which participants completed a perceptual task with confidence ratings. Quantitative comparisons, validated by model recovery analysis, selected the best fitting model as one that postulates a single system for generating both choice and confidence judgments, where confidence is additionally corrupted by signal-dependent noise. These results contradict dual processing theories – according to which confidence and choice arise from coupled or independent systems. Model evidence from these data also failed to support popular notions that confidence is derived from post-decisional evidence, strictly decision-congruent evidence, or posterior probability computations. Further, we explored the link between model performance and the model’s ability to predict different qualitative patterns in the data, in order to determine the reasons why some models fail. These analyses showed that the models that consistently perform the worst fail to capture individual variations in either primary task performance or metacognitive ability. Together, these analyses establish a general framework for model evaluation that also provides qualitative insights into the successes and failures of these models. Most importantly, these results begin to reveal the nature of metacognitive computations.Ph.D

    Synchronous anaplastic oligodendroglioma and carcinoma tongue: A rare association

    Get PDF
    We present the case of a 45-year-old female patient who harbored two synchronous primary malignant neoplasms-an anaplastic oligodendroglioma of the right frontal lobe and a squamous cell carcinoma of the tongue. Both neoplasms were in advanced stage and carried a dismal prognosis. To the best of our knowledge, this is the first documentation in the english literature of such a presentation. The purpose of this article is to alert clinicians to this possibility and to outline the management approach in a different manner in patients presenting with multiple primary neoplasms

    Long Term Two-Phase Flow Analysis of the Deep Low Permeability Rock at the Bruce DGR Site

    Get PDF
    Abnormal pressures have been measured in the deep boreholes at the Bruce site, southern Ontario, where a deep geologic repository for low and intermediate level radioactive waste disposal has been proposed. The pressure regime in the stratigraphic units exhibits either higher than hydrostatic pressure (over-pressured) or lower than hydrostatic pressure (under-pressured) are considered to be abnormal. At the Bruce site, the Ordovician sediments are under-pressured while the underlying Cambrian sandstone and the overlying Guelph carbonate are over-pressured. Hypotheses have been documented in literature to explain the phenomenon of abnormal pressures. These hypotheses include osmosis, glacial loading and deglaciation unloading, exhumation of overlying sediments, crustal flexure and the presence of an immiscible gas phase. Previous work on the Bruce site has shown that the under-pressures in the Ordovician limestone and shales could not be explained by glaciation and deglaciation or by saturated analyses. The presence of a gas phase in the Ordovician formations has been determined to be a reasonable cause of the under-pressure developed in the Ordovician shales and limestones at the Bruce site. Support for the presence of a gas phase includes solution concentrations of methane, concentrations of environmental isotopes related to methane and estimates of water and gas saturations from laboratory core analyses. The primary contribution of this thesis is the sensitivity analyses performed on the hydrogeologic parameters with respect to a one dimensional two-phase flow model. First, a one dimensional two-phase air and water flow model was adopted and reconstructed to simulate the long-term evolution of the groundwater regimes at the DGR site. Then the hydrogeologic parameters which impact the presence of under-pressure in the groundwater are investigated. Data required to quantify the properties of geologic media and groundwater are adopted directly from borehole testing and laboratory testing results. The permeable boundaries of the domain are assumed to be water saturated and pressure specified (using hydrostatic conditions in the Guelph Formation and hydrostatic with 120 m over-pressure condition in the Cambrian and Precambrian). Isothermal conditions were assumed, thus constant water density and viscosity values are estimated for the average total dissolved solids (TDS) concentration of the modelled stratigraphic column. A constant diffusion coefficient (a diffusivity of 0.25×1080.25\times10^{-8} m2^2/s) of air in water is assumed with a saturation-dependent tortuosity. The air generation rate is assumed to simulate the gas phase generated in the Ordovician formations. The numerical simulation of up to 4 million years provides a means to explore the behaviour of gas phase dissipation due to partitioning into the water phase and diffusive transport in the solute phase. Results confirmed that the presence of a gas phase would result in the under-pressure in water

    The Confidence Database

    Get PDF
    Understanding how people rate their confidence is critical for the characterization of a wide range of perceptual, memory, motor and cognitive processes. To enable the continued exploration of these processes, we created a large database of confidence studies spanning a broad set of paradigms, participant populations and fields of study. The data from each study are structured in a common, easy-to-use format that can be easily imported and analysed using multiple software packages. Each dataset is accompanied by an explanation regarding the nature of the collected data. At the time of publication, the Confidence Database (which is available at https://osf.io/s46pr/) contained 145 datasets with data from more than 8,700 participants and almost 4 million trials. The database will remain open for new submissions indefinitely and is expected to continue to grow. Here we show the usefulness of this large collection of datasets in four different analyses that provide precise estimations of several foundational confidence-related effects

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    How do humans give confidence? A comprehensive comparison of process models of perceptual metacognition

    No full text
    Humans have the metacognitive ability to assess the accuracy of their decisions via confidence judgments. Several computational models of confidence have been developed but not enough has been done to compare these models, making it difficult to adjudicate between them. Here, we compare 14 popular models of confidence that make various assumptions, such as confidence being derived from post-decisional evidence, from positive (decision-congruent) evidence, from posterior probability computations, or from a separate decision-making system for metacognitive judgements. We fit all models to three large experiments in which subjects completed a basic perceptual task with confidence ratings. In Experiments 1-2, the best fitting model was the lognormal meta noise (LogN) model, which postulates that confidence is selectively corrupted by signal-dependent noise. However, in Experiment 3, the positive evidence (PE) model provided the best fits. We evaluated a new model combining the two consistently best performing models – LogN and the weighted evidence visibility (WEV). The resulting model, which we call logWEV, outperformed its individual counterparts and the PE model across all datasets, offering a better, more generalizable explanation for these data. Parameter and model recovery analyses showed mostly good recoverability but with important exceptions carrying implications for our ability to discriminate between models. Finally, we evaluated each model’s ability to explain different patterns in the data, which led to additional insight into their performances. These results comprehensively characterize the relative adequacy of current confidence models to fit data from basic perceptual tasks and highlight the most plausible mechanisms underlying confidence generation

    The nature of metacognitive inefficiency in perceptual decision making

    No full text
    Humans have the metacognitive ability to judge the accuracy of their own decisions via confidence ratings. A substantial body of research has demonstrated that human metacognition is fallible but it remains unclear how metacognitive inefficiency should be incorporated into a mechanistic model of confidence generation. Here we show that, contrary to what is typically assumed, metacognitive inefficiency depends on the level of confidence. We found that, across five different datasets and four different measures of metacognition, metacognitive ability decreased with higher confidence ratings. To understand the nature of this effect, we collected a large dataset of 20 subjects completing 2,800 trials each and providing confidence ratings on a continuous scale. The results demonstrated a robustly nonlinear zROC curve with downward curvature, despite a decades-old assumption of linearity. This pattern of results was reproduced by a new mechanistic model of confidence generation, which assumes the existence of lognormally-distributed metacognitive noise. The model outperformed competing models either lacking metacognitive noise altogether or featuring Gaussian metacognitive noise. Further, the model could generate a measure of metacognitive ability which was independent of confidence levels. These findings establish an empirically-validated model of confidence generation, have significant implications about measures of metacognitive ability, and begin to reveal the underlying nature of metacognitive inefficiency
    corecore