124 research outputs found

    Multidimensional collaboration; reflections on action research in a clinical context

    Get PDF
    This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting,observing and reflecting were designed to evaluate practice and implement change in this interactive setting, calling for specific and distinct collaborations. Data collection includes: observing educational interactions; administering patient evaluation questionnaires; interviewing healthcare staff, patients and carers; patient and carer focus groups; and examining written and audiovisual educational materials. The study revolves around and depends on multi-dimensional collaborations. Reflecting on these collaborations highlights the diversity of perspectives held by all those engaged in the study and enhances the action research lessons. Successfully maintaining the collaborations recognises the need for negotiation, inclusivity, comprehension, brokerage,and problem-solving. Managing the potential tensions is crucial to the successful implementation of changes introduced to practice and thus has important implications for patients’ well-being. This paper describes the experiences from an action research project involving new and specific collaborations, focusing on a particular healthcare setting. It exemplifies the challenges of the collaborative action research process and examines how both researchers and practitioners might reflect on the translation of theory into educational practices within a hospital colorectal department. Despite its context-specific features, the reflections on the types of challenges faced and lessons learned provide implications for action researchers in diverse healthcare settings across the world

    A bayesian multilevel modeling approach for data query in wireless sensor networks

    Get PDF
    In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the realtime data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings

    Loop-Generated Bounds on Changes to the Graviton Dispersion Relation

    Get PDF
    We identify the effective theory appropriate to the propagation of massless bulk fields in brane-world scenarios, to show that the dominant low-energy effect of asymmetric warping in the bulk is to modify the dispersion relation of the effective 4-dimensional modes. We show how such changes to the graviton dispersion relation may be bounded through the effects they imply, through loops, for the propagation of standard model particles. We compute these bounds and show that they provide, in some cases, the strongest constraints on nonstandard gravitational dispersions. The bounds obtained in this way are the strongest for the fewest extra dimensions and when the extra-dimensional Planck mass is the smallest. Although the best bounds come for warped 5-D scenarios, for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop can lead to a bound on the graviton speed which is comparable with other constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte

    Super-diffusive Transport Processes in Porous Media

    Get PDF
    The basic assumption of models for the transport of contaminants through soil is that the movements of solute particles are characterized by the Brownian motion. However, the complexity of pore space in natural porous media makes the hypothesis of Brownian motion far too restrictive in some situations. Therefore, alternative models have been proposed. One of the models, many times encountered in hydrology, is based in fractional differential equations, which is a one-dimensional fractional advection diffusion equation where the usual second-order derivative gives place to a fractional derivative of order α, with 1 < α ≤ 2. When a fractional derivative replaces the second-order derivative in a diffusion or dispersion model, it leads to anomalous diffusion, also called super-diffusion. We derive analytical solutions for the fractional advection diffusion equation with different initial and boundary conditions. Additionally, we analyze how the fractional parameter α affects the behavior of the solutions

    Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells

    Get PDF
    Although non-fullerene small molecular acceptors (NF-SMAs) are dominating current research in organic solar cells (OSCs), measurements of thermodynamics drivers and kinetic factors determining their morphological stability are lacking. Here, we delineate and measure such factors in crystallizable NF-SMA blends and discuss four model systems with respect to their meta-stability and degree of vitrification. We determine for the first time the amorphous-amorphous phase diagram in an NF-SMA system and show that its deep quench depth can result in severe burn-in degradation. We estimate the relative phase behavior of four other materials systems. Additionally, we derive room-temperature diffusion coefficients and conclude that the morphology needs to be stabilized by vitrification corresponding to diffusion constants below 10−22 cm2/s. Our results show that to achieve stability via rational molecular design, the thermodynamics, glass transition temperature, diffusion properties, and related structure-function relations need to be more extensively studied and understood. In recent years, the performance of organic solar cells (OSCs) has greatly improved with the development of novel non-fullerene small molecular acceptors (NF-SMA). The rapid increase in power conversion efficiency, now surpassing 15%, highlights an immediate and increasing need to understand the longevity and lifetime of NF-OSCs. However, the field relies mainly on a laborious trial-and-error approach to select polymer:NF-SMA pairs with desirable device stability. Here, we provide a structure-property relation that explains the morphological stability and burn-in degradation due to excessive demixing or crystallization. The framework presented in our study shows that a specific balance of interactions between polymer and NF-SMA can offer a short-term solution against excessive demixing. Long-term morphological stability that also suppresses crystallization can only be achieved by freezing in the initial quenched morphology through the use of polymers and/or NF-SMAs with low flexibility. This research provides a structure-property relation that sheds light on morphological stability of NF-OSCs by using the thermodynamic and the kinetic perspectives. We show that NF-OSCs can suffer from excessive amorphous-amorphous phase separation in the blends and crystallization of NF-SMA. The former instability channel can be eliminated in systems with an optimal miscibility, whereas the excessive phase separation in low miscibility systems and NF-SMA crystallization need to be suppressed through the utilization of polymers or NF-SMAs with low flexibility

    Using membrane computing for obtaining homology groups of binary 2D digital images

    Get PDF
    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor

    Corporate Governance for Sustainability

    Get PDF
    The current model of corporate governance needs reform. There is mounting evidence that the practices of shareholder primacy drive company directors and executives to adopt the same short time horizon as financial markets. Pressure to meet the demands of the financial markets drives stock buybacks, excessive dividends and a failure to invest in productive capabilities. The result is a ‘tragedy of the horizon’, with corporations and their shareholders failing to consider environmental, social or even their own, long-term, economic sustainability. With less than a decade left to address the threat of climate change, and with consensus emerging that businesses need to be held accountable for their contribution, it is time to act and reform corporate governance in the EU. The statement puts forward specific recommendations to clarify the obligations of company boards and directors and make corporate governance practice significantly more sustainable and focused on the long term

    Regional variability in peatland burning at mid- to high-latitudes during the Holocene

    Get PDF
    Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT Iniciación 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of Münster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe
    corecore