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Abstract. Membrane Computing is a new paradigm inspired from cel-
lular communication. Until now, P systems have been used in research
areas like modeling chemical process, several ecosystems, etc. In this pa-
per, we apply P systems to Computational Topology within the context
of the Digital Image. We work with a variant of P systems called tissue-
like P systems to calculate in a general maximally parallel manner the
homology groups of 2D images. In fact, homology computation for binary
pixel-based 2D digital images can be reduced to connected component
labeling of white and black regions. Finally, we use a software called Tis-
sue Simulator to show with some examples how these systems work.

Keywords: computational topology, homology groups, membrane
computing, P systems.

1 Introduction

Natural Computing studies new computational paradigms inspired from Na-
ture. It abstracts the way in which Nature “computes”, conceiving new com-
puting models. There are several fields in Natural Computing that are now well
established. To mention a few of these, Genetic Algorithms introduced by J.
Holland[22] which is inspired by natural evolution and selection in order to find
an optimal solution in a large set of feasible candidate solutions; Neural Net-
works introduced by W.S. McCulloch and W. Pitts[24] which is based on the
interconnections of neurons in the brain; or DNA-based molecular computing,
that was initiated when L. Adleman[1] published a solution to an instance of the
Hamiltonian path problem by manipulating DNA strands in a lab.

Membrane Computing1 is a theoretical model of computation inspired by the
structure and functioning of cells like living organisms able to process and gener-
ate information. The computational devices in Membrane Computing are called
P systems. Roughly speaking, a P system consists of a membrane structure,

1 A layman-oriented introduction can be found in [32], a comprehensive presentation
can be found in [30] and further updated bibliography in [40]. A presentation of
applications can be found in [5].
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in the compartments of which one places multisets of objects which evolve ac-
cording to given rules. In the most extended model, the rules are applied in a
synchronous non-deterministic maximally parallel manner, but some other se-
mantics are being explored. Ever since the seminal paper [29]was introduced,
different models of P systems have been studied. According to their architec-
ture, these models can be split into two sets: cell-like P systems and tissue-like P
systems[33,7]. In cell-like P systems, membranes are hierarchically arranged in
a tree-like structure. The inspiration for such architecture is the set of vesicles
inside the cell. All of them perform their biological processes in parallel and life
is the consequence of the harmonious conjunction of such processes.

This paper is devoted to the second approach: tissue-like P systems. Accord-
ing to the architecture, the main difference with cell-like P systems is that the
structure of membranes is defined by a general graph instead of a tree-like graph.
These models were first presented by Mart́ın–Vide et al. in [25] and it has two
biological inspirations (see [26]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a network of processors dealing with symbols and communicating these symbols
along channels specified in advance. The communication among cells is based
on symport/antiport rules. This way of communication for P systems was intro-
duced in [31] on the basis of the communication between cells. Symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions.

On the other hand, homology groups related to the “different” n-dimensional
holes (connected component, tunnels, cavities,...)are invariants from Algebraic
Topology which are frequently used in Digital Image Analysis and Structural
Pattern Recognition. In some sort, they reflect the topological nature of the ob-
ject in terms of the number and characteristics of its holes. In a binary 2D image,
the computation of homology groups can be reduced to a process of black and
white connected components labeling. The different black connected components
are the generators of the 0-dimensional homology group which is the “black”
part of the image. On the other hand, the closed “black” curves surrounding
the different white connected components of the image are the generators of its
1-dimensional homology group.

J. Chao and J. Nakayama connected Natural Computing and Algebraic Topol-
ogy using Neural Networks[4] (extended Kohonen mapping). Moreover, the idea
to relate P systems and image processing already appeared in [3,6]. Here, we
use for the first time, the power and efficiency of a variant of P systems called
tissue-like P systems[8,9] to calculate the homology groups to binary pixel-based
2D images. The parallelism is massive in this model (see [20,23]), so the time
used to obtain the homology groups does not depend on the number of black
and white connected components, but only on the thickness of them.

The paper is structured as follows: in the next section we present the definition
of basic P systems with input. In Section 3, we design two systems for calculating
H0 and H1 for any binary pixel-based 2D digital image (having n × n pixels)
and we show how both systems calculate the homology groups to two specific
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8× 8 images in the following section. In final part of the paper, we present some
conclusions and future work.

2 Description of a Model of Membranes

In the first definition of tissue P systems in [25,26] the membrane structure did
not change along the computation. Based on the cell-like model of P systems with
active membranes, Gh. Păun et al. presented in [33] a new model of tissue-like
P systems with cell division. The biological inspiration is clear: alive tissues are
not static network of cells, since cells are duplicated via mitosis in a natural way.
Dı́az-Pernil presented in [7] a formalization of Tissue-like P systems (without
cellular division), and these are the systems that we use in this paper.

The main features of this model, from the computational point of view, are
that cells do not have polarizations (the contrary holds in the cell-like model of
P systems, see [30]) and the membrane structure is a general graph, not a tree
(i.e., not a cell-like model).

Formally, a tissue-like P system of degree q ≥ 1 with input is a tuple of the
form

Π = (Γ, Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where

1. Γ is a finite alphabet, whose symbols will be called objects,
2. Σ(⊂ Γ ) is the input alphabet,
3. E ⊆ Γ (the objects in the environment),
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration,
5. R is a finite set of communication rules of the following form: (i, u/v, j), for

i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈ Γ ∗,
6. iΠ ∈ {0, 1, 2, . . . , q},
7. oΠ ∈ {0, 1, 2, . . . , q}.

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each
one consisting of an elementary membrane) labeled by 1, 2, . . . , q. We will use
0 to refer to the label of the environment, iΠ and oΠ denote the input region
and the output region (which can be the region inside a cell or the environ-
ment)respectively.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labeled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
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object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, i.e, in each step we apply a maximal set of rules.

Now, to understand how we can obtain a computation of one of these P
systems we present an example of them:

Consider us the following tissue-like P system

Π ′ = (Γ, Σ, E , w1, w2,R, iΠ , oΠ)

where

1. Γ = {a, b, c, d, e},
2. Σ = ∅,
3. E = {a, b, e},
4. w1 = a3 e, w2 = b2 c d,
5. R is the following set of communication rules

(a) (1, a/b, 2),
(b) (2, c/b2, 0),
(c) (2, d/e2, 0),
(d) (1, e/λ, 0),

6. iΠ = 1,
7. oΠ = 0

We can observe the initial configuration of this system in the Figure 1 (a). We have
four rules to apply. First rule is (1, a/b, 2). The rule can be applied whenever an
object ’a’ is founded in cell 1 and one copy of ’b’ appear in cell 2. This rule sends
’a’ to cell 2 and ’b’ from cell 2 to cell 1. Rule 2 is (2, c/b2, 0) and implies that when
symbol ’c’ present in cell 2 then this rule takes two copies of ’b’ from environment
and sends ’c’ to the environment (i.e. cell 0). Rule 3 is similar to rule 2. Rule 4,
(1, e/λ, 0), sends the object ’e’ to the environment. So, as we have 3 copies of ’a’
and 1 copy of ’e’ in cell 1 and 2 copies of ’b’, one copy of ’c’ and two copies of ’d’
appear in cell 2. Then, all the rules can be applied in a parallel manner. Figure
1(b) show the next configuration of the system after applying the rules. If reader
observes the initial elements in the environment of a tissue-like P systems (in this

Fig. 1. (a) Initial Configuration of system Π ′ (b) Following Configuration of Π ′

(a) (b)
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case a, b), one can observe the number of the copies of these elements always ap-
pear as one, because we have an arbitrary large amount of copies of them. The
only objects changing its number of copies in the environment during a computa-
tion are the elements were not appear there initially. In this example, d has two
copies because it is not an initial element of the environment.

3 Calculating Homology Groups

In the following, we will try to calculate homology groups, H0 and H1, to a
digital image of two dimensions. The image is given by multiple pixels forming
a N

2 mesh. We suppose each pixel has associated with one of the two possible
colors, black and white. Then, the black or white pixel in the position (i, j) is
codified by the object Bij or Wij .

H0 is given by the number of connected components formed by the black
pixels and H1 is given by the number of the holes created by the black pixels;
i.e., the number of connected components of white pixels surrounded by black
pixels. So, we consider 4-adjacency to see which are the neighboring pixels (if
we consider 8-adjacency the systems will be very similar to the systems appear
in this paper).

3.1 A Family of Tissue-Like P Systems to Obtain H0

At this point, we want to know the number of connected components formed by
the black pixels. We define a family of tissue-like P systems and for all digital
images with n2 pixels (n ∈ N) we take a tissue-like P system whose input is given
by two types of elements: Bij codifying a black pixel, Wij codifying a white pixel
of the input image. The output is given by the number of objects C that appear
in the output cell when the system stops (the number of connected components).

Below, we describe the rules of the family of systems in a schematic manner.
For each type of rules we show a representative rule. For example, we describe
the rules of type 1 as follows:

W K
(1, W B B

W B
/

W K
W W B , 0)

W B

where K could be B or W .
We describe the rules of each type depending on the position of the black

pixels (up, down, left and right) respect to white pixels. For example, with the
above schema we represent 8 subtypes of rules of type 1: 4 for each possible
position and we must consider the possible values of K.

So, we can define a family of tissue-like P systems to calculate H0 to any 2D
image. For each n ∈ N we will consider the tissue-like P system of the family
with input of degree 2:

Π0(n) = (Γ, Σ, E , w1, w2,R, iΠ , oΠ),

defined as follows



388 H.A. Christinal, D. Dı́az-Pernil, and P. Real Jurado

a) Γ = Σ ∪ {Gij : 1 ≤ i, j ≤ n} ∪ {C},
b) Σ = {Bij , Wij : 1 ≤ i, j ≤ n},
c) E = Σ ∪ {C},
d) w1 = {Wij : (i = 0 ∧ 1 ≤ j ≤ n) ∨

(i = n + 1 ∧ 1 ≤ j ≤ n) ∨
(j = 0 ∧ 1 ≤ i ≤ n) ∨
(j = n + 1 ∧ 1 ≤ i ≤ n)},

w2 = ∅,

Fig. 2. Cutting branches of two black connected components

e) R is the following set of communication rules:

1.
W K

(1, W B B
W B

/
W K

W W B , 0)
W B

, where K = B or K = W .

2.
W W

(1, W B B
W W

/
W W

W W B , 0)
W W

The above two types of rules are used to eliminate single points, i.e. branches
of black connected components, as seen in Figure 2 where the necessary pixels
to apply two rules of type 1 are colored in red, and then colored in green
when pixels are used to apply rules of type 2.

3.
W W

(1, W B B
W B B

/
W W

W W B , 0)
W B B

4.

W
(1, W B B B

B W W
W

/

W
W W B B , 0)

B B W
W

5.

W W W
(1, B B B W

B W B
W

/

W W W
B W W W , 0)
B B B

W

6.
B B B

(1, B W B
B B B

/
B B B
B B B , 0)
B B B
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Fig. 3. Reducing black connected components with rules of type 2 to 6

These of rules are used to reduce the dimensions of the black connected
components with white pixels inside them, as seen in Figure 3 where we
have colored pixels used by rules of types 3 to 6 with different colors: red,
blue, yellow and green, respectively.

7.
W

(1, W B W
W

/
W

W G W , 0)
W

The 7-th type of rule is used when the system reduces the black connected
components to only one pixel. So, these rules change the color of the pixel
to green (codify with the object Gij).

8. (1, Gij/Wij C, 0), for 1 ≤ i, j ≤ n
The 8-th type of rules brings an object C and Wij to membrane 1 and sends
Gij to the environment.

9. (1, C/λ, 2)
The 9-th type of rule sends one copy of the object C to the output cell.
Then, so much copies of C as connected components of black pixel arrive to
cell 2.

f) iΠ = 1,
g) oΠ = 2.

Overview of a Computation: Given an image as input data whose size is
n×n, there exists a system of this family working in a parallel manner: First, it
eliminates the branches of the black connected components that appear in the
image in 4 steps. For this, the system uses rules of type 1 and 2. Secondly, the
system reduces the size of the black connected components from four directions-
up, down, left and right. The system takes the rules of types 3 to 6 to realize
this task, and needs a logarithmic number of steps proportionate to the size
of the biggest black connected component and reduce each component to only
one black pixel. In this manner, we have obtain the complexity of the problem
to obtain homology group H0 of binary 2D digital image using tissue-like P
systems.
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Complexity and Necessary Resources: Taking account the size of the input
data is O(n2), the amount of necessary resources for defining the systems of our
family and the complexity of our problem can be observed in the following table:

H0 Problem
Complexity

Number of steps of a computation O(n)
Necessary Resources

Size of the alphabet 3n2 + 1
Initial number of cells 2
Initial number of objects 4n− 3
Number of rules O(n2)
Upper bound for the length of the rules 22

3.2 A Family of Tissue-Like P System to Obtain H1

Now, we want to know the number of white connected components surrounded
by one or more black connected components. So, we define a family of tissue-like
P systems and for each digital image with n2 pixels (n ∈ N), we take a specific
tissue-like P system of the family for all the images with size n × n.

For each n ∈ N we will consider the tissue-like P system

Π1(n) = (Γ, Σ, E , w1, w2,R, iΠ , oΠ),

defined as follows

a) Γ = Σ ∪ {bij , gij , wij : 1 ≤ i, j ≤ n} ∪ {C},
b) Σ = {Bij , Wij : 1 ≤ i, j ≤ n} ∪ {Pij : (i = 0 ∧ 1 ≤ j ≤ n) ∨ (i = n + 1 ∧

1 ≤ j ≤ n) ∨ (j = 0 ∧ 1 ≤ i ≤ n) ∨ (j = n + 1 ∧ 1 ≤ i ≤ n)},
c) E = Γ ,
d) w1 = {a1} ∪ {Pij : (i = 0 ∧ 1 ≤ j ≤ n) ∨ (i = n + 1 ∧ 1 ≤ j ≤ n) ∨

(j = 0 ∧ 1 ≤ i ≤ n) ∨ (j = n + 1 ∧ 1 ≤ i ≤ n)},
w2 = ∅,

e) R is the following set of communication rules:

1. (1, ai/a2
i+1, 0), for i = 1 . . . n/2

It is a counter used to decide when the objects codifying pixels are sent to
cell 2.

2. (1, P W /P P, 0)
The system eliminates all the white pixels (pass to be colored in pink) that
are not inside black connected component.
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3. (1, a2�lg n�Kij/kij , 0), for 1 ≤ i, j ≤ n and K = B ∨ W .
When the objects a2�lg n� appear in the cell 1 system sends all the objects
codifying the black or white pixels to the cell 2.
The rest of the rules are the same of the system Π0, but exchanging the
white pixels by black pixels and in the other way:

4.
w k

(1, w b b
w b

/
w k

w w b , 0)
w b

, where k = b or k = w.

5.
w w

(1, w b b
w w

/
w w

w w b , 0)
w w

6.
w w

(1, w b b
w b b

/
w w

w w b , 0)
w b b

7.

w
(1, w b b b

b w w
w

/

w
w w b b , 0)

b b w
w

8.

w w w
(1, b b b w

b w b
w

/

w w w
b w w w , 0)
b b b

w

9.
b b b

(1, b w b
b b b

/
b b b
b b b , 0)
b b b

10.
w

(1, w b w
w

/
w

w g w , 0)
w

11. (1, gij/wij C, 0), for 1 ≤ i, j ≤ n
12. (1, C/λ, 2)

f) iΠ = 1,
g) oΠ = 2.

Overview of a Computation: Using a tissue-like P system, to compute H1

of a digital image is similar to compute H0. There exists a system of this family
working in a parallel manner: First, it takes the white pixels not contained in
black connected components and transforms these pixels in pink (type of rules
2). Using the counter ai, white and black pixels are transformed in other objects
(small letters) in n/2+1 steps (types of rules 1 and 3). In this form, we can apply
the rest of rules (those similar to Π0). So system eliminates the branches of the
white connected components that appear in the image in 4 steps. For this, the
system uses types of rules 4 and 5. Then, the system reduces the size of the white
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Fig. 4. Two images about Tissue Simulator

connected components from four directions: up, down, left and right. The system
takes the rules of types 6 to 9 to realize this task, and needs a logarithmic number
of steps proportionate to the size of the biggest white connected component and
reduce each component to only one white pixel (less than O(n)). In this manner,
we have obtained the complexity of the problem to obtain homology group H1

of binary 2D digital image using tissue-like P systems.

Complexity and Necessary Resources: Taking account the size of the input
data is O(n2), the amount of necessary resources to construct the tissue-like P
systems of our family and the cellular complexity respect to time of our problem
can be observed in the following table:

H1 Problem
Complexity

Number of steps of a computation O(n)
Necessary Resources

Size of the alphabet 5n2 + 4n− 2
Initial number of cells 2
Initial number of objects 4n− 2
Number of rules O(n2)
Upper bound for the length of the rules 22

4 Some Examples

In this section, we check the tissue-like P systems in section 3 above with some
images that appear in Figure using a specific sequential software, called Tissue
Simulator (see [39]) and developed by R. Borrego-Ropero et al. in [2]. This
software was developed to help researchers to understand how these systems
obtain a possible computation. Although, this program was developed in Java,
it was not meant to be used in Digital Image. So, we do not work with images
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Fig. 5. Two images to check

Fig. 6. Number of black connected components in the previous images

Fig. 7. Number of white holes in the previous images

directly, but we work with elements (of an alphabet) codifying the pixels of an
image, and the output is given by these elements (see Figure 4).

First, we are going to obtain the different connected components for the images
given by Figure 5.

After a logarithmic number of steps with respect to the input data, the Tis-
sue Simulator stops and gives the output data that appears in the output cell
(cell 2) of the system Π1 (created to calculate the number of black connected
components). This output is given using elements codifying the images which
are shown in the Figure 6.

On the other hand, using a logarithmic number of steps again with respect
to the input data, Tissue Simulator calculates the number of white connected
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components inside black connected components. It is shown in Figure 7, the
output codified by the elements that appear in the output cell for each one of
images of Figure 5.

5 Conclusions and Future Work

We have shown in this paper that the homology for 2D digital objects (using
4-connectivity or 8-connectivity for neighbor pixels) can be efficiently obtained
using P systems. The most important issue we want to deal with the near fu-
ture, is to use P systems for getting homological and cohomological information
(Reeb graphs[17], AT-models ([13,14,15,16,18]), homology gradient vector field
[28,27,37,36], representative (co)cycles of (co)homology generators [19,11,12], co-
homology algebra [21,11], cohomology operations [38,10], torsion numbers [21],
homotopy groups [34,35] for 3D and 4D geometric objects. The complexity in
time for most of the algorithms previously cited ranges from linear (for con-
nected component labeling), passing through cubical (for homology gradient
vector fields or homology groups), and O(n5) for cohomology algebra and coho-
mology operations, up to exponential and more in the case of homotopy groups.
The predictable drastic improvements in complexity that P-systems could mean
in Computational Algebraic Topology methods. This would allow in the future
to handle with optimism the computation processes of these complex topological
invariants.
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10. González Dı́az, R., Real, P.: Computation of Cohomology Operations of Finite
Simplicial Complexes. Homology Homotopy and Applications 2, 83–93 (2003)

11. Gonzalez-Diaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti
di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer,
Heidelberg (2003)

12. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete
Applied Mathematics 147, 245–263 (2005)

13. Gonzalez-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic Topolog-
ical Analysis of Time-sequence of Digital Images. In: Ganzha, V.G., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer, Hei-
delberg (2005)

14. Gonzalez-Diaz, R., Medrano, B., Real, P., Sánchez, J.: Reusing Integer Homology
Information of Binary Digital Images. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.)
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