62 research outputs found

    Functional anatomy of the Macrouridae (Teleostei, Gadiformes)

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May, 1976Osteology and myology of the head of 21 species of macrourids and two closely related species are described. A general model of the mechanics of the macrourid head during feeding has been developed based on the anatomical findings. The structure of the head and integration of morphological units are used to explain specializations in the utilization of different food resources. Pelagic prey are the source of food for the most primitive species and for a few of the more specialized ones. A highly protrusible mouth and long rostrum are adaptations for benthic feeding and have appeared in three independent evolutionary lines within the group. Macrourids that are predators on benthos tend to be small and live at depths shallower than 2000 meters

    GENETIC DIVERSITY AND GENE FLOW IN THE MORPHOLOGICALLY VARIABLE, RARE ENDEMICS BEGONIA DREGEI AND BEGONIA HOMONYMA (BEGONIACEAE)

    Get PDF
    Begonia dregei and B. homonyma (Begoniaceae), rare plants endemic to coastal forests of eastern South Africa, are two closely related species with high levels of variation among populations in the shape of leaves. Distribution of genetic variation and genetic relatedness were investigated in 12 populations of B. dregei and seven of B. homonyma using polyacrylamide gel electrophoresis. Twelve of the 15 enzyme loci examined were polymorphic, but only seven loci were polymorphic within at least one population. Genetic diversity measures indicated that the among-population gene differentiation represents >90% of the total genetic component in both species considered individually or combined. This indicated restricted gene flow, consistent with the limited dispersal abilities of Begonia generally and the ancient separation of isolated forest patches. Genetic distances among populations are much higher than usually found within species. Allozyme data provide no support for the recognition of B. dregei and B. homonyma as distinct species.Excellent models for the study of evolutionary pro¬cesses are often provided by taxa that pose the greatest problems in systematics (Wolf, Soltis, and Soltis, 1991). Endemic plants provide a superb tool for studying the dynamic processes of speciation and evolution, particu¬larly island endemic plants (Ito and Ono, 1990; Aradya, Mueller-Dombois, and Ranker, 1991; Barrett, 1996). Ev¬idence of most evolutionary events that formed continen¬tal biota has been lost because such biota are so ancient (Carson, 1987). Complex patterns of variation may blur species boundaries and lead to taxonomic complexity

    Changes in Personal Networks of Women in Residential and Outpatient Substance Abuse Treatment

    Get PDF
    Changes in personal network composition, support and structure over 12 months were examined in 377 women from residential (n=119) and intensive outpatient substance abuse treatment (n=258) through face-to-face interviews utilizing computer based data collection. Personal networks of women who entered residential treatment had more substance users, more people with whom they had used alcohol and/or drugs, and fewer people from treatment programs or self-help groups than personal networks of women who entered intensive outpatient treatment. By 12 months post treatment intake, network composition improved for women in residential treatment; however, concrete support was still lower and substance users still more prevalent in their networks. Network composition of women in outpatient treatment remained largely the same over time. Both groups increased cohesiveness within the network over 12 months. Targeting interventions that support positive changes in personal networks may heighten positive long term outcomes for women entering treatment

    Detecting genuine and deliberate displays of surprise in static and dynamic faces

    Get PDF
    People are good at recognizing emotions from facial expressions, but less accurate at determining the authenticity of such expressions. We investigated whether this depends upon the technique that senders use to produce deliberate expressions, and on decoders seeing these in a dynamic or static format. Senders were filmed as they experienced genuine surprise in response to a jack-in-the-box (Genuine). Other senders faked surprise with no preparation (Improvised) or after having first experienced genuine surprise themselves (Rehearsed). Decoders rated the genuineness and intensity of these expressions, and the confidence of their judgment. It was found that both expression type and presentation format impacted decoder perception and accurate discrimination. Genuine surprise achieved the highest ratings of genuineness, intensity, and judgmental confidence (dynamic only), and was fairly accurately discriminated from deliberate surprise expressions. In line with our predictions, Rehearsed expressions were perceived as more genuine (in dynamic presentation), whereas Improvised were seen as more intense (in static presentation). However, both were poorly discriminated as not being genuine. In general, dynamic stimuli improved authenticity discrimination accuracy and perceptual differences between expressions. While decoders could perceive subtle differences between different expressions (especially from dynamic displays), they were not adept at detecting if these were genuine or deliberate. We argue that senders are capable of producing genuine-looking expressions of surprise, enough to fool others as to their veracity

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore