142 research outputs found

    Order of [6]Ti4+ in a Ti-rich calcium amphibole from Kaersut, Greenland : a combined X-ray and neutron diffraction study

    Get PDF
    In order to characterize the role of Ti in the crystal structure of calcium amphiboles with high or even dominant oxo-component, the crystal structure of a Ti-rich calcium amphibole from a gabbro at Kaersut, Greenland, has been refined with single-crystal MoK\u3b1 X-ray intensity data to an R1(F) index of ~0.025, and with single-crystal Laue neutron intensity data to an R1(F) index of ~0.053. The crystal used for X-ray structure refinement was characterized by electron- and ion-microprobe analysis. The site populations of the C-group cations Mg, Fe and Ti were calculated from the refined site-scattering values for the M(1), M(2) and M(3) sites derived by both X-ray and neutron diffraction. Ti is distributed among all the three sixfold coordinated M sites, with a strong preference for the M(1) and M(3) sites, where its main role is maintaining electroneutrality at the deprotonated O(3) site. The pattern of distortion of the M(1), M(2) and M(3) octahedra differs from that in F-free deprotonated or partly deprotonated amphiboles, where Ti4+ does not occur at the M(3) site. The neutron structure refinement provides also a clear picture of the environment of the proton, anisotropic displacement behaviour and potential hydrogen-bonding arrangements. A trifurcated hydrogen-bonding configuration has been identified, with two O(6) and one O(7) oxygen atoms as acceptors of weak hydrogen-bonds

    Temperature- and pressure-dependent structural study of {Fe(pmd) 2[Ag(CN)2 ]2}n spin-crossover compound by neutron Laue diffraction

    Get PDF
    The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ¿ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa-1. The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure–temperature (P–T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2]- bridging ligands)

    Synthesis and characterisation of new Bi(iii)-containing apatite-type oxide ion conductors: the influence of lone pairs

    Get PDF
    Lone-pair cations are known to enhance oxide ion conductivity in fluorite- and Aurivillius-type materials. Among the apatite-type phases, the opposite trend is found for the more widely studied silicate oxide ion conductors, which exhibit a dramatic decrease in conductivity on Bi(III) incorporation. In this work, the influence of lone-pair cations on the properties of apatite-type germanate oxide ion conductors has been investigated by preparing and characterising seven related compositions with varying Bi(III) content, by X-ray and neutron powder diffraction and impedance spectroscopy. All materials are very good oxide ion conductors (with conductivities of up to 1.29 × 10−2 S cm−1 at 775 °C). Increasing Bi(III) content leads to increases in conductivity by up to an order of magnitude, suggesting significant differences in the oxide-ion conduction mechanisms between lone-pair-containing apatite-type germanate and silicate solid electrolytes

    A Neutron/X-Ray Diffraction, IR, and 1H/29Si NMR Spectroscopic Investigation of Armenite: Behavior of Extra Framework Ca Cations and H2O Molecules in Microporous Silicates

    Get PDF
    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30 2H2O, from Wasenalp, Valais, Switzerland was studied. Armenite typically forms in relatively low-temperature hydrothermal veins and fissures and has small pores containing Ca cations and H2O molecules as extra-framework species. Single-crystal neutron and X-ray diffraction measurements were made on armenite from the above locality for the first time. IR powder spectroscopic measurements were made from room temperature (RT) down to 10 K. 1H and 29Si NMR measurements were made at RT. Attention was given to investigating the behavior of the extra-framework species and hydrogen bonding. The diffraction results show new features not observed before in published diffraction studies on armenite crystals from other localities. The neutron results also give the first static description of the protons, allowing bond distances and angles relating to the H2O molecules and H-bonds to be determined. The diffraction results indicate Al/Si order in the framework. Four crystallographically independent Ca and H2O molecule sites were refined, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm bc0 c001 and by a single H2O bending mode at 1654 cm bc0 c001. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm bc0 c001 and two H2O bending modes at 1650 and 1606 cm bc0 c001. The 29Si MAS NMR spectra show four resonances at -81.9, -83.2, -94.9 and -101.8 ppm that are assigned to crystallographically different Si sites in an ordered structure, although their relative intensities deviate somewhat from those predicted for complete Al/Si order. The 1H MAS spectra contain a single main resonance near 5.3 ppm and a smaller one near 2.7 ppm, which can be assigned to H2O molecules bonded to Ca and a second H2O type located in a partially occupied site, respectively. Bonding for the extra-framework \u201cCa-oxygen-anion-H2O-molecule quasi-clusters\u201d and also the nature of H-bonding in the microporous zeolites scolecite, wairakite and epistilbite are analyzed. The average OH stretching wavenumbers shown by the IR spectra of armenite and scolecite are, for example, not far removed from that observed in liquid H2O, but greater than that of ice. What remains poorly understood in microporous silicates is how the ion-dipole interaction in quasi clusters affects H-bonding strength between the H2O molecules and the aluminosilicate framework

    The effect of a 24-hour photoperiod on the survival, growth and swim bladder inflation of pre-flexion yellowfin tuna (Thunnus albacares) larvae

    Get PDF
    The effects of two different continuous photoperiod regimes on survival, growth and swim bladder inflation of pre-flexion yellowfin tuna (Thunnus albacares) larvae were investigated. Each photoperiod regime was tested twice with a different larval cohort to confirm the observed results. Trials 1 and 2 tested the effect of a reduced night-time light intensity (10-molesm-2s-1=30% of the daytime intensity) and found that those larvae reared for 8days under the 24h lighting (24-L) photoperiod exhibited a slight improvement in survival compared to those reared under the control photoperiod of 12h light (12-L), however these improvements were not significant. In addition, those larvae reared under this photoperiod regime were equal in length to those in the control. Trials 3 and 4 compared the same variables in larvae reared under a continuous photoperiod (24-L) with a constant light intensity of 30-molesm-2s-1, against those reared under the aforementioned 12-L photoperiod. Survival of larvae under the continuous photoperiods were 9±1% (n=2) and 10±2% (n=3) for Trials 3 and 4, respectively, compared to less than 1% in both control treatments; differences that in both cases were highly significant. In addition, in both trials larvae cultured under the 24-L photoperiod were significantly larger and exhibited more advanced development than those reared under the 12-L photoperiod, however swim bladder inflation was significantly lower. We suggest that the improved survival and growth achieved under a continuous photoperiod is due to the extended foraging time combined with the prevention of mortality caused by night-time sinking

    Magnon-magnon interactions in the Spin-Peierls compound CuGeO_3

    Full text link
    In a magnetic substance the gap in the Raman spectrum, Delta_R, is approximatively twice the value of the neutron scattering gap, Delta_S, if the the magnetic excitations (magnons) are only weakly interacting. But for CuGeO_3 the experimentally observed ratio Delta_R/Delta_S is approximatively 1.49-1.78, indicating attractive magnon-magnon interactions in the quasi-1D Spin-Peierls compound CuGe_3. We present numerical estimates for Delta_R/Delta_S from exact diagonalization studies for finite chains and find agreement with experiment for intermediate values of the frustration parameter alpha. An analysis of the numerical Raman intensity leads us to postulate a continuum of two-magnon bound states in the Spin-Peierls phase. We discuss in detail the numerical method used, the dependence of the results on the model parameters and a novel matrix-element effect due to the dimerization of the Raman-operator in the Spin-Peierls phase.Comment: submitted to PRB, Phys. Rev. B, in pres

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e′p)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,e′p)γ(e,e'p)\gamma to H(e,e′p)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Dynamics of the 16^{16}O(e,e'p) cross section at high missing energies

    Get PDF
    We measured the cross section and response functions (R_L, R_T, and R_LT) for the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 60 MeV and P_miss > 200 MeV/c, the cross section is relatively constant. Calculations which include contributions from pion exchange currents, isobar currents and short-range correlations account for the shape and the transversity but only for half of the magnitude of the measured cross section

    Search for long-lived doubly charged Higgs bosons in p(p)over-bar collisions at root s=1.96 TeV

    Get PDF
    We present a search for long-lived doubly charged Higgs bosons (H+/-+/-), with signatures of high ionization energy loss and muonlike penetration. We use 292 pb(-1) of data collected in p (p) over bar collisions at root s=1.96 TeV by the CDF II detector at the Fermilab Tevatron. Observing no evidence of long-lived doubly charged particle production, we exclude H-L(+/-+/-) and H-R(+/-+/-) bosons with masses below 133 GeV/c(2) and 109 GeV/c(2), respectively. In the degenerate case we exclude H+/-+/- mass below 146 GeV/c(2). All limits are quoted at the 95% confidence level
    • …
    corecore