2,776 research outputs found

    Multi-objective optimisation of machine tool error mapping using automated planning

    Get PDF
    Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan

    An investigation into the vulnerability of UK butterflies to extreme climatic events associated with increasing climate change

    Get PDF
    Climate change while associated with change a in the mean climate also presents itself as a change in the variance of climate, resulting in an increase in the number of extreme climatic events (ECEs). Increased numbers of hot days, droughts and extreme precipitation events are all predicted under future climate scenarios. To date, there is very little understanding as to the potential effects that this may have on biodiversity. In order to model the future impacts of ECEs on biodiversity and to inform conservationists about the most appropriate mitigation strategies, we need to understand how ECEs have impacted species in the past, which species are sensitive and why? Finally, can factors such as habitat and topography play a role in reducing the impact of ECEs? This thesis aims to advance the knowledge relating to the above questions by examining their impact on UK butterflies, a bioindicator group. This study developed a novel approach to identifying statistically identified, biologically relevant ECEs (heat, cold, precipitation and drought). Research into the impact of ECEs on yearly population change, localised declines and widespread decline events, identified that UK butterflies are particularly vulnerable to extreme heat during the overwintering phase, while tUK butterflies find extreme heat beneficial during their adult phase and finally are negatively impacted upon by precipitation extremes during their adult life stage. Chapter 4 of this thesis found that increasing slope heterogeneity in association with increased habitat diversity buffered butterflies against widespread declines associated with ECEs. Finally, chapter 5 of this thesis found that butterfly families respond differently when accounting for all extremes across all life stages, but that life history traits such as dispersal and number of larval host plants can be used to predict a species sensitivity to various ECEs

    Conformational change of the AcrR regulator reveals a possible mechanism of induction

    Get PDF
    The Escherichia coli AcrR multidrug-binding protein represses transcription of acrAB and is induced by many structurally unrelated cytotoxic compounds. The crystal structure of AcrR in space group P2221 has been reported previously. This P2221 structure has provided direct information about the multidrug-binding site and important residues for drug recognition. Here, a crystal structure of this regulator in space group P31 is presented. Comparison of the two AcrR structures reveals possible mechanisms of ligand binding and AcrR regulation

    Flexible provisioning of Web service workflows

    No full text
    Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures

    Modification and preservation of environmental signals in speleothems

    Get PDF
    Speleothems are primarily studied in order to generate archives of climatic change and results have led to significant advances in identifying and dating major shifts in the climate system. However, the climatological meaning of many speleothem records cannot be interpreted unequivocally; this is particularly so for more subtle shifts and shorter time periods, but the use of multiple proxies and improving understanding of formation mechanisms offers a clear way forward. An explicit description of speleothem records as time series draws attention to the nature and importance of the signal filtering processes by which the weather, the seasons and longer-term climatic and other environmental fluctuations become encoded in speleothems. We distinguish five sources of variation that influence speleothem geochemistry: atmospheric, vegetation/soil, karstic aquifer, primary speleothem crystal growth and secondary alteration and give specific examples of their influence. The direct role of climate diminishes progressively through these five factors. \ud \ud We identify and review a number of processes identified in recent and current work that bear significantly on the conventional interpretation of speleothem records, for example: \ud \ud 1) speleothem geochemistry can vary seasonally and hence a research need is to establish the proportion of growth attributable to different seasons and whether this varies over time. \ud \ud 2) whereas there has traditionally been a focus on monthly mean Ã�´18O data of atmospheric moisture, current work emphasizes the importance of understanding the synoptic processes that lead to characteristic isotope signals, since changing relative abundance of different weather types might 1Corresponding author, fax +44(0)1214145528, E-mail: [email protected] control their variation on the longer-term. \ud \ud 3) the ecosystem and soil zone overlying the cave fundamentally imprint the carbon and trace element signals and can show characteristic variations with time. \ud \ud 4) new modelling on aquifer plumbing allows quantification of the effects of aquifer mixing. \ud \ud 5) recent work has emphasized the importance and seasonal variability of CO2-degassing leading to calcite precipitation upflow of a depositional site on carbon isotope and trace element composition of speleothems. \ud \ud 6) Although much is known about the chemical partitioning between water and stalagmites, variability in relation to crystal growth mechanisms and kinetics is a research frontier. \ud \ud 7) Aragonite is susceptible to conversion to calcite with major loss of chemical information, but the controls on the rate of this process are obscure. \ud \ud Analytical factors are critical to generate high-resolution speleothem records. A variety of methods of trace element analysis are available, but standardization is a common problem with the most rapid methods. New stable isotope data on Irish stalagmite CC3 compares rapid laser-ablation techniques with the conventional analysis of micromilled powders and ion microprobe methods. A high degree of comparability between techniques for Ã�´18O is found on the mm-cm scale, but a previously described high-amplitude oxygen isotope excursion around 8.3 ka is identified as an analytical artefact related to fractionation of the laser-analysis associated with sample cracking. High-frequency variability of not less than 0.5o/oo may be an inherent feature of speleothem Ã�´18O records
    corecore