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a b s t r a c t

Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge.

There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a

method of intelligently constructing measurement plans demonstrated that it is feasible to optimise

the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due

to the plan schedule. However, production scheduling and a continuously changing environment can

impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the

use of the produced measurement model to minimise machine tool downtime, the uncertainty of mea-

surement and the arithmetic mean of both is investigated and discussed through the use of twelve dif-

ferent error mapping instances. The multi-objective search plans on average have a 3% reduction in

the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improve-

ment in estimated uncertainty of measurement metric when compared to the uncertainty of the tempo-

rally optimised plan. Further experiments on a High Performance Computing (HPC) architecture

demonstrated that there is on average a 3% improvement in optimality when compared with the exper-

iments performed on the PC architecture. This demonstrates that even though a 4% improvement is ben-

eficial, in most applications a standard PC architecture will result in valid error mapping plan.

� 2014 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

A machine tool is a mechanically powered device used during

subtractive manufacturing to cut material. The design and config-

uration of a machine tool is chosen for a particular role and is dif-

ferent depending, amongst other things, on the volume and

complexity range of the work-pieces to be produced. A common

factor throughout all configurations of machine tools is that they

provide the mechanism to support and manoeuvre the functional

position, and sometimes the orientation, between the cutting tool

and work-piece. The physical manner by which the machine moves

is determined by the machine’s kinematic chain (Moriwaki, 2008).

The kinematic chain will typically constitute a combination of lin-

ear and rotary axes.

Fig. 1(a) shows an example of a five-axis gantry machine tool

that has three linear and two rotary axes which are used to move

the tool around the work-piece. Typically, this configuration of

machine will be used to machine heavy, multi-sided, large volume

work-pieces. Fig. 1(b) shows an alternative design of a three-axis

C-frame machine tool. This particular machine tool configuration

consists of three linear and no rotary axes and is typically used

to machine smaller work-pieces than the five-axis machine.

In a perfect world, a machine tool would be able to move to pre-

dicable points and orientations in three-dimensional space, result-

ing in a machined artefact that is geometrically identical to the

designed part. However, due to tolerances in the production of

machine tools and wear during operation, this is very difficult to

achieve mechanically. Pseudo-static errors are the geometric posi-

tioning errors resulting from the movement of the machine tool’s

axes that exist when the machine tool is nominally stationary.

Machine tool error mapping is the process of quantifying these

errors (Schwenke et al., 2008) so that predictions as well as

improvements of part accuracy can be made via numerical analysis

and compensation.

The significance of the error mapping process is dependent on

application; manufacturers machining high value parts to tight tol-

erances, usually in the order of less than a few tens of micrometres,

should have their machines regularly error mapped otherwise they

are at risk of producing non-confirming parts. Manufactures with

broader tolerances may calibrate less frequently. There are many
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error components that collectively result in deviation of the

machine tool from the nominal. For analytical and correction pur-

poses, it is important to measure each error component. For exam-

ple, as seen in Fig. 2(a) a machine tool with three linear axes will

have twenty-one geometric errors. This is because each linear axis

will have six-degrees-of-freedom and a squareness error with the

nominally perpendicular axes (Mekid, 2009; Schwenke et al.,

2008). Therefore, a three-axis machine tool will have a total of

twenty-one geometric errors. Additionally, as seen in Fig. 2(b) a

rotary axis will have six motion, two location errors, and two

squareness errors (Bohez et al., 2007; Khim and Keong, 2010;

Srivastava et al., 1995). Therefore, a five-axis machine tool will

have a total of forty-one geometric errors.

The measurement of each error will involve the use of a test

method and a measurement device. The selection of equipment

will usually be done in unison with the test method, influenced

by the engineer’s preference. However, there are many cases where

many different instruments can be used for performing the same

test method, where each require a different duration to install

and perform the test. For example, both a laser interferometer

and a granite straight edge can be used to measure the straightness

of a linear axis. The laser interferometer might take longer to set-

up, but if the machine has an axis with a long travel, the granite

straight edge might need to be repositioned multiple times to mea-

sure the entire axis, therefore, taking more time to perform. For

most manufacturers, removing a machine tool frommanufacturing

has large financial implications. Downtime can be in excess of £120

per hour (Shagluf et al., 2013). Therefore, the accumulative cost for

a manufacturer with many machines can be large. For example,

consider a manufacturer with 10 machine tools, each of which

undergoes a 12 h error mapping exercise per year. The estimated

downtime cost would be £14,400. However, this is a conservative

figure for many high value manufacturing companies.

The estimated uncertainty of measurement is a parameter asso-

ciated with the result of a measurement that characterises the dis-

persion of the values that could reasonable be attributed to the

measurand (BIPM, 2008). The uncertainty of measurement is cal-

culated for each individual measurement and the accumulative

estimated uncertainty of measurement has a direct effect on toler-

ance conformance of parts manufactured using the machine.

Therefore, from the manufacturer’s perspective, it is desirable to

reduce the estimated uncertainty of measurement. The estimated

uncertainty of measurement is affected by change in environmen-

tal temperature. If the same calibration plan was carried out at dif-

ferent times throughout a working-day while the temperature is

continuously changing, the accumulative estimated uncertainty

would also change.

Depending upon the manufacturer’s motivation for performing

the error map, they may want to optimise the error map plan to

either minimise financial cost, or maximise the quality of the error

mapping exercise. The following different optimisation criteria

considered in this paper are: (1) the reduction of machine tool

downtime, (2) the reduction of the estimated uncertainty of mea-

surements, and (3) balancing the two parameters with the possi-

bility of customising their individual weighting. The change in

environmental temperature throughout a measurement, as well

as between interrelated measurements, will have a significant

impact on estimated uncertainty of measurement ISO230-9

(2005). The decision making process involved for construction

optimal error maps plans is exhaustive. However, computational

intelligence in the form of domain-independent Artificial Intelli-

gence (AI) can be used to provide optimal solutions when given a

model of the problem (Ghallab et al., 2004).

In this paper, a description of individual factors that affect a

machine’s downtime and estimated uncertainty of measurement

during error mapping are defined. This leads to a discussion of a

previously developed model (Parkinson et al., 2012a, 2012b) that

can be used by state-of-the-art domain-independent AI planning

tools to find optimised solutions (Russell et al., 1995). The develop-

ment of this model to produce measurement plans that are opti-

mised to reduce machine downtime and the estimated

uncertainty of measurement due to the plan order is presented

and discussed. This multi-objective optimisation is motivated by

the desire to reduce both machine tool downtime and the uncer-

tainty of measurement, which to some extent are competing as a

temporally optimised plan will generally have a high estimated

uncertainty of measurement. Following the development of a

multi-objective model, twelve different case-study examples are

presented and described to show the ability to generate plans that

are optimised for (1) downtime, (2) uncertainty of measurement,

and (3) the arithmetic mean of them both. The generated calibra-

tion plans are then examined and discussed to evaluate their fit-

ness-for-purpose. It is then identified that computational

resources are restricting the planner’s ability to find optimal solu-

tions in ten minute time allocation. This leads to a further investi-

gation into the produced measurement plan when solving the

planning problem on both personal and High Performance Com-

puting architectures.

2. Related work

The complexity associated with machine tool geometric error

measurement (Mekid, 2009; Schwenke et al., 2008) and the desire

to reduce measurement uncertainty (Bringmann and Knapp, 2009;

Bringmann et al., 2008) and machine tool downtime are well

known for individual measurements. However, surveying the liter-

ature suggests that less well known is the potential to reduce

machine tool downtime and the uncertainty of measurement by

intelligent construction of the multiple-measurement plan.

Bringmann and Knapp (2009) and Bringmann et al. (2008) have

identified that current ISO 230 part 2 (ISO230, 2006) is based on

sequential testing of single geometric component errors. However,

an exception is made for ISO 230 part 4 (ISO230, 2005) where sev-

eral machine errors are tested together while the machine tool is

performing multi-axis movement. Bringmann and Knapp (2009)

then continue to describe the importance of interrelated errors

using the example of linear yaw deviation effecting the non-

orthogonality measurement at different positions in the plane of

non-orthogonality measurement. The authors identify that this

process is time consuming, and in response have shown the cali-

bration of a machine tool using a 3D-ball plate where the amplifi-

cation of interrelated measurements can be identified. However,

when such approach cannot be used, they suggest using a Monte

Carlo simulation that uses an approximation of the machine tool,

the measurement and the machine’s performance after calibration

to estimate the uncertainty of measurement. Performing the

(a) Five-axis machine tool (b) Three-axis machine
tool

Fig. 1. Example three- and five-axis machine tools.

3006 S. Parkinson, A.P. Longstaff / Expert Systems with Applications 42 (2015) 3005–3015



Monte Carlo simulation sufficiently often will produce a distribu-

tion for the uncertainty of the identified errors. This work suc-

ceeded in producing optimal measurement plans when

considering interrelated measurements by suggesting the use of

a 3D-ball plate, or measurement uncertainty of measurement

reduction using Monte Carlo simulation. In one example, the

uncertainty of measurement for the X-axis linear positioning error

EXX is reduced from 30 lm to 10 lm. The limitation of this work is

that it is concerned with achieving the best possible measurement

sequence with respect to the uncertainty of measurement at all

costs, ignoring machine tool downtime.

Muelaner et al. (2010) produced a method of large volume

instrumentation selection and measurability analysis. This work

is not explicitly for machine tool calibration, but does considers

the suitability of instrumentation based on measurement method

and instrumentation criteria. This implementation results in a pro-

totype piece of software capable of finding the best instrumenta-

tion and measurement method from an internal database.

Although this work is capable of always finding the optimum selec-

tion based on the predefined criteria, it pays no consideration to

temporal aspects. Additionally, the produced model and software

does not take any consideration to interrelated measurements,

allowing for optimal sequencing.

Recent advancements in measurement instrumentation have

demonstrated how multiple error components can be measured

simultaneously using the same instrument. These techniques can

simplify the calibration planning process as the calibration will

require less time to complete, making the duration between mea-

surements lower. Therefore, the likelihood of being able to sche-

dule the measurements to happen over a duration that is

temperature-stable is increased. However, this significantly

depends on the machine tool’s environment. For example, the

API XD™ (API, 2014) allows for measuring all 6DOF simultaneously

for one linear horizontal axis from a single set-up.

Other methods of machine tool calibration include being able to

measure indirectly all the geometric error components simulta-

neously. One such method is the Etalon laserTRACER (Etalon,

2014) which has a linear measurement resolution of 0.001 lm
for measuring axes up to 15 m in length. The laserTracer tracks

the actual path of the machine tool throughout the entire working

volume. This is done by attaching a reflector on the machine tool at

the tool fixing point. From the acquired information, the system

can perform a full calibration of multiple axis Cartesian machines.

This includes all six-degrees-of-freedom and the non-orthogonal

error. Using this method to calibrate a machine tool reduce the

requirement for the use of multiple instrumentation and measure-

ment methods, therefore, the type of calibration planning dis-

cussed in this thesis is reduced. However, due to the expensive

cost of such equipment, the majority of machine tool owners and

providers of calibration services will not yet own such a device.

The literature survey suggests that although both industrial and

academic experts are currently producing valid machine tool cali-

bration plans, there is little evidence to suggest that they are con-

sidering optimisation. It has also been identified that there is a

desire to minimise machine tool downtime during calibration

and to improve the machine’s accuracy. From these observations,

it has been established that there is potential benefit from develop-

ing a method to automatically produce optimisedmachine tool cal-

ibration plans.

3. Perspectives of optimisation

3.1. Temporal optimisation

A machine tool will not be available for normal manufacturing

while the error mapping process is taking place. For this reason, it

is important to consider the temporal aspects when performing a

measurement. Measuring an error component has several tempo-

ral implications (Schwenke et al., 2008). The following list

describes the different phases associated with all measurements.

The duration of each phase is based on empirical observation

(Parkinson et al., 2012a) and can easily be adjusted should the user

require.

1. Set-up of the instrumentation is normally a manual process

where the instrumentation will be taken from its protective

packaging and set-up on the machine for use. This duration

includes time taken for fine tuning of the instrumentation (e.g

laser beam alignment) and it can also include the time taken

for the instrument to stabilise in terms of self-heating and sta-

bilising to the environmental conditions, although with good

planning this can be achieved ‘‘offline’’ without the need for

the machine.

2. Measurement of the component error can be manual or

automated, but either way it will still require time to complete.

During measurement, the measurement data as well as any

necessary environmental data will be recorded. The duration

will be affected by the sampling frequency, interval between

targets, dwell time to take a measurement, and the feedrate

of the machine.

3. Removal, adjustment and reposition of instrumentation are

post-measurement durations. Removal is simply the time taken

to remove the instrumentation and package it suitable for stor-

age. Adjustment is the duration for when an instrumentation is

required to be adjusted to measure another component error.

For example, after measuring linear positioning using a laser

interferometer the optics could be changed to angular optics

without having to go through the complete set-up. Reposition-

ing is where the instrument needs moving to perform another

measurement for the same component error. For example,

(a) Errors of a linear motions (b) Errors of a rotary motions

Fig. 2. Motions errors.
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when measuring straightness of a long axis using a Short Range

Displacement Transducer (SRDT) and a granite straight edge it

is possible that the straight edge will need to be repositioned

multiple times to cover a sufficient amount of travel. Another

example is using a granite square and SRDT; the square can

be adjusted to measure another axis, taking less time than set-

ting the instrumentation up in the first instance. In this analysis,

the ‘‘taking out of the box’’ is not included. It is assumed that

the measurement engineers have expertise to do this efficiently.

However, planning could be extended to include this.

3.1.1. Downtime calculation

During planning, the estimated machine tool downtime can be

calculated by summing the individual durations associated with

each measurement. A minimisation function can be used return

the most efficient selection of measurements where the objective

is to reduce estimated time. Each measurement task is comprised

of several sub-tasks that have an associated duration.

f ðtÞ ¼ min
X

n

i¼1

m
X

n

i¼1

d

 ! !

ð1Þ

Eq. (1) shows an abstract minimisation function, f ðeÞ, for measuring

the machine tool t, where m are individual measurements (error

component) and is made up of the sum of durations, d. For example,

the duration to setup a measurement and the duration to perform

the measurement. min is the combination of d for measurement

m where the accumulation of all the durations is as low as possible.

3.2. Uncertainty of measurement

Uncertainty of measurement is a parameter associated with the

result of a measurement that characterises the dispersion of the

values that could reasonable be attributed to the measurand

(BIPM, 2008). For example, a thermometer might have an uncer-

tainty value of ±0.1 �C. Therefore, it can be stated that when the

thermometer is displaying 20 �C, it is actually 20 �C ±0.1 �C with

a confidence level of 95% where the confidence level is determined

by the distribution and knowledge of the system. Quantifying and

reducing uncertainty of measurement is an important task and is

required to be reported on the calibration certificate. More impor-

tantly, it is required to determine if the measurement method is

suitable to establish whether the machine is capable of meeting

its tolerances.

The philosophy behind the investigation performed in this

paper is that, rather than calculating the total estimated

uncertainty for each individual measurement, it is more efficient

to consider only the contributors due to scheduling that affect

the estimated uncertainty. This means that it is only necessary to

model aspects that cause the estimated uncertainty of measure-

ment to change, thus simplifying the domain model.

There are many potential contributors that affect the uncer-

tainty of measurement. However, when automatically constructing

an error map plan, the aim is to select the most suitable instrumen-

tation and measurement technique that has the lowest estimated

uncertainty. In addition, the estimated uncertainty should take

into considering the changing environmental data, and where pos-

sible, schedule the measurements to take place where the effect of

temperature on the estimated uncertainty is at its lowest.

Fig. 3 shows a real-world example of the Y-axis straightness in

the X-axis direction measured on a gantry milling machine at two

different temperatures. From this figure, it is evident that the error

quadruples with a 4.5 �C increase in temperature. This example

illustrates the different of measuring the same error component

at different temperatures and motivates the significance that envi-

ronmental temperature has on the estimated uncertainty of

measurement.

The following list provides the factors that affect the estimated

uncertainty of the error map plan, and suggests how they can be

optimised.

� Measurement instrumentation having the lowest estimated

uncertainty of measurement. Where possible, intelligently

selecting instrumentation with the lowest uncertainty will

reduce the overall estimated uncertainty of measurement.

However, they may also have a higher temporal cost.

� The change in environmental temperature throughout the dura-

tion of a measurement can significantly increase the uncer-

tainty of measurement. When possible, the measurement

should be scheduled to take place where the temperature is

stable.

� When considering inter-related measurements, the change in

environmental temperature between their measurement can

significantly increase the uncertainty. During planning, it is

important to schedule interrelated measurements where the

change in environmental temperature is at its lowest. For exam-

ple, Mian et al. (2013) report a 5 �C environmental temperature

change over a three day period that resulted in 18 lm displace-

ment in the Y-axis and 35 lm in the Z-axis.

� Allowing the instrument to correctly stabilise in the environ-

ment before the measurement can reduce the uncertainty due

to thermal distortion and self-heating.

Fig. 3. Y-axis straightness change (EXY ) due to temperature.
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3.2.1. Uncertainty calculation

One known method, recommended by International Standards

Organisation (ISO), involves combining the individual uncertain-

ties using the root of the sum of squares to produce a combined

uncertainty uc . In this paper, Eq. (2) is used for calculating uc

(ISO230-9, 2005; BIPM, 2008).

uc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

u2
i

q

ð2Þ

Where uc is the combined standard uncertainty in micrometers

(lm), and ui is the standard uncertainty of uncorrelated contributor,

i, in micrometers (lm).

Once uc has been calculated, the expanded uncertainty is calcu-

lated by multiplying uncertainty Uc by the coverage factor k, which

in this case is k ¼ 2 which provides a confidence level of 95%.

A comprehensive example of calculating the uncertainty of

measurement for measuring the squareness of two perpendicular

axes can be found in Parkinson et al. (2014a, 2014b).

4. Automated planning

Planning is an abstract, explicit deliberation process that

chooses and organises actions by anticipating their expected out-

come. Automated planning is a branch of Artificial Intelligence

(AI) that studies this deliberation process computationally and

aims to provide tools that can be used to solve real-world planning

problems (Ghallab et al., 2004).

Domain-independent planning is a form of planning where a

piece of software (planner) takes as input the problem specifica-

tion and knowledge about the domain in the form of an abstract

model of actions. Searching for solution plans is a PSPACE hard

problem (Erol et al., 1995). PSPACE describes the computational

complexity associated with decision problems that can be solved

by a Turing machine using a polynomial amount of space. One

key difficulty encountered with domain-independent planners is

the very broad range of planning problems which could be

presented, requiring any guidance strategy to be effective across

the potential range of problems.

Advances in domain-independent research resulted in the for-

mation of the International Planning Competition (IPC)

(McDermott, 2000) where state-of-the-art planners try to solve

an ever increasing set of complex benchmark problems. The birth

of the IPC brought a standardised formalism for describing plan-

ning domains and problems that could be used to make direct

comparisons between the performance of planners. Therefore, sup-

porting faster progress in the community. This formalism is called

the Planning Domain Definition Language (PDDL) (McDermott

et al., 1998) and has gone through many revisions where new fea-

tures, allowing for more expressive domain modelling, have been

added.

5. Domain model

The previously developed temporal model (Parkinson et al.,

2012a, 2012b) has been extended to encode the knowledge of

uncertainty of measurement reduction (Parkinson et al., 2014a).

Fig. 4 shows the functional flow between the PDDL actions within

the extended model. In the figure, durative actions are represented

using a circle with a solid line. Fig. 4 shows that the measurement

action has been split up into two different action and an adjust

action has been added which may need to be executed if the

instrumentation is not effective for the travel length of the axis.

It is necessary to have two versions of the measurement action

because not all measurements have other errors propagating down

the kinematic chain and effecting their uncertainty. The following

list details the extension of the measurement action into two

actions along with and adjustment action:

Measureno : The measurement action represents a measurement

where no consideration is required to be taken for

any inter-related measurements.

Measurein : Conversely, this measurement action represents a

measurement where consideration is required to

be taken because of inter-related measurements.

Adjust: Some axes are longer than the range of the measur-

ing device. In this case, the measuring device needs

to be readjusted, perhaps several times, in order to

measure the full range of the axis.

The developed model is encoded in PDDL 2.1 because it uses

numbers, time, and durative actions (Fox and Long, 2003). Regular

numeric fluents to model constants and variables relating to the

uncertainty of measurements. For example, a device’s uncertainty

(UDEVICE LASER) can be represented in PDDL as (=(device-u?i -

instrument) 0.001) where the instrument object ?i has the

value of 0.001 lm.

In the temporal model, the cost of each action is the time taken

to perform that specific task. Using this model will produce an

error map plan, indicating the ordering of the measurements and

the time taken to perform each test. In order to encode tempera-

ture dependent equations, access is needed to the change in envi-

ronmental temperature that occurs between the start and end of a

measurement. Assuming access to the temperature as a fluent, the

value can be sampled at the start and end of the measurement with

the at start and at end syntax of PDDL. Thus, a temporary value

(start-temp) is recorded at the start of the action, and then cal-

culate TD at the end of the action by subtracting the start temper-

ature from the current temperature.

As stated previously, in order for this modelling choice to work,

it must be possible to query the temperature as a fluent at any

given time. The method used in order to achieve this is described

in the following section.

5.0.2. Temperature profile

In PDDL2.1 it is not possible simply to represent predictable

continuous, non-linear numeric change. More specifically, it is

not possible to represent the continuous temperature change

throughout the error mapping process. This presents the challenge

of how to optimise the sequence of measurements while consider-

ing temperature. The solution implemented in the model involves

Setup

Measurein Measureno

Adjust

Remove

Fig. 4. Illustration showing the PDDL actions and their functional flow.
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discretizing the continuous temperature change into sub-profiles

of linear continuous change.

This environmental temperature profile contains the systematic

heating and cooling profile for the environment of a machine tool.

This information can be obtained by non-invasive monitoring or

historical date from the machine tool owner. It is not possible to

predict the non-systematic environmental temperature deviation

and the magnitude of the systematic element could fluctuate

slightly. However, using this systematic profile will allow us to pre-

dict how the temperature will change throughout the day, in par-

ticular where the rate of change is at its lowest. Scheduling against

this profile gives the best available chance of producing realistic

and accurate results. During the actual error mapping process,

deviations from the systematic profile are recorded and taken into

account on the calibration certificate.

The continuous temperature profiles are split up into a discrete

set of linear sections by iterating over the temperature data looking

for a difference in temperature greater than a given sensitivity.

This allows the temperature profile to be discretized into a set of

linear sub-profiles. An example can be seen in Fig. 5 where the

environmental temperature profile (difference from 20 �C) for a

forty-eight hour period is shown (Monday and Tuesday). The cho-

sen sensitivity, s, is based on the minimum temperature sensitivity

of the available instrumentation. In this example, it is 0.1 �C. The

graph shows the temperature profile across 48 h; the second

24 h period displays a higher temperature profile than the first

and appears to reach relative stability. The reason is due to the ini-

tial state on the Monday morning after the weekend shut-down.

To model these sub-profiles in the PDDL model, they are repre-

sented as predetermined exogenous effects. In order to encode

these in PDDL2.1, the standard technique of clipping durative

actions together is used (Fox et al., 2004). The #t syntax is used

to model the continuous linear change through the subprofile.

Because the (temp) fluent is never used as a precondition, the

measure actions can make use of the continuously changing value,

without violating the no moving targets (Long and Fox, 2003) rule.

Given the predefined times t1; . . . ; tn when the sub-profile p1; . . . :pn

will change, a collection of durative actions, d1; . . . dn are created

that will occur for the durations t1; t2 � t1; . . . ; tn � tn�1. An example

durative action d1 that represents a sub-profile p1 can be seen in

Fig. 6 where the duration t1 ¼ 42. In the measure-influence

action, the temperature at the start of the measurement action,

t1, and at the end of the action, t2 are stored in start-temp and

temp, respectively. Therefore, in the measurement action it is pos-

sible to calculate the maximum temperature deviation, DT , based

on two temperatures, t1 and t2.

5.0.3. Uncertainty equations

Implementing equations where the result is influenced by other

measurements is also encoded in the PDDL using numeric fluents.

For example, Fig. 7 shows the calculation for the squareness error

measurement using a granite square and a dial test indicator

where the uncertainty is influenced by the two straightness errors.

In the model, this is encoded by assigning two fluents (error-

val?ax?e1)) and (error-val?ax?e2)), the maximum permis-

sible straightness error in the PDDL initial state description. This

fluent will then be updated once the measurement estimation

has been performed. The planner will then schedule the measure-

ments to reduce the effect from the contributing uncertainty. This

shows how the uncertainty can be reduced due to the ordering of

the plan.

5.1. Planner

Local Search for Planning Graphs with Timed Initial Literals

(TILs) and derived predicates (LPG-td) (Gerevini et al., 2008) is a

domain-independent planning tool and was a top performer in

the third International Planning Competition (IPC) (Long and Fox,

2003), solving 428 planning problems with a success of 87%. Addi-

tionally LPG-td was a top performer involving domains with pre-

dictable exogenous events (which are TILs in PDDL) (Gerevini

et al., 2006). LPG-td implements an extended local search algo-

rithm and action graph representation. This representation is a

Numerical Action (NA) graph which extends the action graph

(Gerevini and Serina, 2002) to contain propositional nodes and

numerical nodes, labelled with propositions and numerical expres-

sions, respectively (Serina, 2004). Since the production of LPG-td,

many other planners have been developed that can solve PDDL2.2

problems and beyond. However, there are few planners that can

support the full semantics of PDDL.

6. Experimental analysis

To examine the relationship between optimisation of temporal

and the uncertainty of measurement, twelve different PDDL prob-

lem instances are used and optimised for following three different

metrics:

1. U – (:metric minimize (u-m))

2. T – (:metric minimize (total-time))

3. ðUþTÞ
2

– (:metric minimize (/(+(u_c)(totaltime))2))

The notation of problem instances used within this paper repre-

sents the configuration of the machine tool (3 and 5 axis), the

range of available instrumentation (1 or 2), and the experience of

(:durative-action temp-profile1

:duration(= ?duration 42.0)

:condition

(and(over all(not(start0)))

(over all (start1))))

:effect

(and

(rate)0.00595))

(increase (temp)(*#t 0.00595))

(at end (not(start1)))

(at end (start2))

(at start (clip-started))))

)

Fig. 6. Durative actions that represents the temperature sub-profile p1 where the

duration is t1 ¼ 42.
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Fig. 5. Graph showing both the original and discretized temperature profile. The

used discretization value is 0.01 �C.
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the measurement engineer (1, 2, and 3). For example, problem

instance 32A represents a three-axis machine tool with the

potential use of a wide range of instrumentation planned by a

measurement engineer with limited experience.

The experiments were performed on an AMD Phenom II

3.50 GHZ processor with 4 GB of RAM. The results show the most

efficient plan produced within a 10 min CPU time limit. All the pro-

duced plans are then validated using VAL (Howey et al., 2004). VAL

is the automatic validation tool for PDDL that is capable of validat-

ing PDDL solutions against PDDL problems and domains. These

experiments were carried out without the ability to schedule mea-

surements concurrently. This is because in this current model, the

effect that concurrent measurements will have on the uncertainty

of measurement has not been accounted for. It is likely that uncer-

tainties could improve due to lower change in ambient conditions

during relative measurements, but this could be counteracted by

any need to use instrumentation with a higher uncertainty in order

to achieve concurrent measurement.

Table 1 shows the empirical data from performing these exper-

iments. From these results, it is evident that when optimising for

time, no consideration is taken for the uncertainty due to the plan

order. Similarly, it is evident that when optimising for the uncer-

tainty due to the plan order, no consideration for temporal impli-

cations is taken. However, when optimising the plan for both the

uncertainty due to the order of the plan and reducing the overall

timespan, it is evident that the planner can establish a good

compromise.

From Table 1 it is noticeable that a solution to each problem

instance is found within the 10 min time limit. In addition, Table

2 shows exactly how many plans were produced during this

time-limit and at what time the optimal plan was discovered. This

information shows that the optimal plans were discovered on aver-

age after 8 min 29 s of execution. This highlights that it is possible

that the optimal plans are not being found within the 10 min per-

iod. It is also worth highlighting that the results demonstrate the

potential advantage of using automated planning based on the

developed model. However, it is possible that experts with differ-

ent opinions and knowledge might produce error map plans that

have a lower estimated uncertainty of measurement. Encoding this

new knowledge in the model would then allow for comparable

optimised error map plans to be produced.

6.0.1. High Performance Computing

To investigate this further, without imposing a strict computa-

tion restriction, experiments were performed on a hardware

platform with increased resource availability. The chosen platform

is the Huddersfield University QueensGate Grid (QGG) High

Table 1

Temporal & uncertainty optimisation results (PC) (hours:minutes).

Instance Optimise T Optimise U Optimise T & U

T U (lm) T U (lm) T U (lm)

31A 33:12 99 34:12 52 33:38 53

31B 29:42 76 28:03 52 30:12 72

31C 29:21 66 31:45 59 29:21 70

32A 31:14 142 33:00 92 31:19 115

32B 28:27 135 30:34 94 28:57 112

32C 26:04 212 27:05 142 26:05 168

51A 52:05 120 56:56 18 55:11 27

51B 52:28 150 55:11 138 52:55 138

51C 50:18 199 51:29 193 50:54 193

52A 47:46 93 50:58 27 50:28 33

52B 45:17 90 47:46 82 46:05 82

52C 47:46 152 49:11 93 48:27 116

Table 2

The number of identified plans and the discovery time of the optimal

(minutes:seconds).

Instance Optimise T Optimise U Optimise T & U

# T # T # T

31A 6 8:58 1 7:48 6 9:43

31B 5 7:45 1 9:21 5 9:02

31C 6 5:10 2 8:08 3 7:26

32A 8 9:20 2 8:40 4 8:40

32B 5 8:42 2 9:26 5 9:08

32C 7 9:47 1 7:14 2 8:19

51A 3 9:55 1 8:37 3 9:37

51B 2 9:36 1 8:33 1 9:50

51C 3 8:23 1 8:48 4 8:09

52A 4 7:39 2 9:20 5 9:41

52B 2 5:42 2 7:25 2 7.01

52C 4 9:00 2 8:08 1 7:51

(at start(assign(temp-u)

;calculate u device using the length to measure.

(+(*(/(k value ?in)(*(u calib ?in)(length-to-measure ?ax ?er)))

(/(k value ?in)(*(u calib ?in)(length-to-measure ?ax ?er))))

;calculate u misalignment.

(+(*(/(+(u misalignment ?in)(u misalignment ?in))(2sqr3))

(/(+(u misalignment ?in)(u misalignment ?in))(2sqr3)))

;calculate u error contributors.

(+(*(/(+(error-val ?ax ?e1)(error-val ?ax ?e2))(2sqr3))

(/(+(error-val ?ax ?e1)(error-val ?ax ?e2))(2sqr3)))

;calculate u m machine tool.

(+(*(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d)))

(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d))))

;calculate u m device.

(+(*(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d)))

(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d))))

;calculate u eve.

(*(/(u eve)(2sqr3))(/(u eve)(2sqr3))))))))

)

)

Fig. 7. Partial PDDL code showing part of the measure-influence action.
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Performance Computing (HPC) architecture. The dedicated hard-

ware has 37 cores with a clock speed of 2.53 GHz with an allocated

8 GB of RAM to each core. The same experiments as for the PC were

performed on the QGG with a CPU execution time-limit of 24 h.

The motivation behind allowing the planners to run for 24 h is

because the HPC architecture has clock speeds comparable with

a PC architecture. As LPG-td is a single-core application, allowing

the planner to execute for only 10 min would yield similar results

as on the PC. Therefore, the chosen HPC architecture creates the

possibility to execute many instances of LPG-td simultaneously

and for prolonged periods which would render the average PC

unusable for other activities. Table 3 shows the results from these

experiments. From these results, it is evident that in almost all

instances plans have been found with a lower metric. This

highlights that providing significantly more computation time

can result in plans that are better optimised. However, it is impor-

tant to consider the gain in optimality to evaluate whether the

extra computational resources are necessary. Table 4 shows

the percentage improvement for each metric when comparing

the experiments performed on the QGG and those on the PC. It is

noticeable that while in most cases there is an improvement in

the optimised metric, there is also often deterioration for the

non-optimised metric. Additionally, there is an improvement for

both metrics for the multi-object experiments.

The use of the QQG has shown that improvements over the

optimal solutions identified on a PC can be achieved by using

greater computation power. However, determining whether this

is necessary is down to the end user. For example, for a measure-

ment engineer wishing to perform a quick and effective error

mapping process on an old machine tool operating with large

tolerances, the use of a PC architecture is sufficient. Conversely, a

measurement engineering error mapping a state-of-the-art

machine tool that operates to sub-micron tolerances within the

aerospace sector will want to perform both the quickest and most

effective error mapping plan that can minimise the uncertainty of

measurement, making the use of HPC for this engineer is justified.

6.1. Plan excerpts

The following three plan excerpts (Figs. 8–10) illustrate the pro-

duced plans for the three different metrics and the differences

between the order of measurement.

Fig. 8 shows an excerpt from a temporally optimised plan pro-

duced from the 31A problem instance. The motivation for showing

this particular excerpt is to investigate how the measurement of

interrelated errors is scheduled in the produced plan. Firstly, it is

noticeable in the plan that the measurements that can use the

same instrumentation are clustered together so the instruments

can be adjusted from a previous measurement to save time, rather

Table 3

Temporal & uncertainty optimisation results (Cluster) (hours:minutes).

Instance Optimise T Optimise U Optimise T & U

T U (lm) T U (lm) T U (lm)

31A 32:42 137 34:32 52 32:52 18

31B 29:14 197 31:45 49 29:34 138

31C 29:15 80 31:57 67 29:15 193

32A 30:52 142 32:50 90 31:03 27

32B 28:12 135 29:27 89 28:57 82

32C 25:56 293 26:41 139 26:05 93

51A 51:52 137 63:20 18 52:50 52

51B 51:00 271 57:17 138 52:35 63

51C 49:05 291 53:38 193 50:11 67

52A 47:46 114 49:44 27 47:46 95

52B 45:02 89 47:46 82 45:52 112

52C 47:22 162 48:32 88 47:46 114

Table 4

Percentage improvement between QQG and PC (hours:minutes).

Instance Optimise T Optimise U Optimise T & U

T (%) U (%) T (%) U (%) T (%) U (%)

31A 1 �21 �1 0 2 2

31B 2 �62 �2 13 2 14

31C 0 �17 �1 �12 0 5

32A 1 0 0 2 1 21

32B 1 0 4 7 0 0

32C 0 �28 1 2 0 19

51A 0 �13 �10 0 4 50

51B 3 �45 �4 0 1 0

51C 2 �32 �4 0 1 0

52A 0 �19 2 0 6 20

52B 1 1 0 0 1 0

52C 1 �6 1 5 1.4 25

Average 1 �21 �1 1 2 13
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Fig. 8. Plan excerpt from a temporal optimisation.
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Fig. 9. Plan excerpt from an uncertainty optimisation.
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than set-up from a packaged state. It is also noticeable that the

measurement order is not optimal for reducing the estimate uncer-

tainty of measurement because of the measurement of the Y-axis

about the Y-axis angular deviation (ECY ). This adds a time increase

of around one hour between the interrelated straightness and non-

orthogonal errors. The significance of this time period on uncer-

tainty is that the continuing temperature increase will have a neg-

ative impact on the estimated uncertainty of measurement. From

Table 1 it can be seen that the total machine downtime when using

this error mapping plan would be 33 h and 12 min with an uncer-

tainty of measurement due to the plan order metric of 99 lm.

Fig. 9 illustrates an excerpt from the produced plan for the same

31A. but this time optimising for the uncertainty of measure due to

the ordering of the plan. Similarly to Figs. 8 and 9 also displays the

section of the plan that details the scheduling of interrelated mea-

surements. From the plan, it is noticeable that temporal aspects

have not been considered because even though measurements

using the same instrumentation are grouped together, the planner

has scheduled for the instrumentation. It is also noticeable that the

plan is optimised to reduce the estimated uncertainty of measure-

ment due to the plan order. This can be seen by the fact that the

two interrelated straightness errors (EYX and EZY ) are scheduled

sequentially followed by the measurement of non-orthogonality

between the Y- and X-axis (EC0Y ). Scheduling these errors sequen-

tially means that any effect due to changing temperature over time

can be minimised. It can also be seen in the produced plan that the

temperature variation over the course of the three interrelated

measurements is only 0.3�C. The machine downtime when using

this error mapping plan would be 34 h and 12 min with a plan

order uncertainty of measurement metric of 52 lm. This plan

results in an increased downtime of 1 h over the temporally opti-

mised plan, but reduces the uncertainty of measurement metric

by 47 lm.

The third plan excerpt shown in Fig. 10 shows the plan order

when optimising for both machine tool downtime and the uncer-

tainty of measurement due to the plan order for problem instance

31A. Firstly, it is evident that temporal optimisation has been

achieved by scheduling measurements that use the same instru-

mentation sequentially so that the instrumentation only needs to

be adjusted, not removed and set-up once again. Secondly, it can

be seen that the uncertainty of measurement due to the plan order

has been reduced by scheduling interrelated measurements

together as well as scheduling them where the temperature differ-

ence is at its lowest. From examining the temperature profile seen

in Fig. 5, it is evident that there are areas where the rate of change

of temperature is lower. However, when solving multi-objective

optimisation planning problems, a trade-off between both metrics

is going to take place. In Table 1 this trade-off can be seen where

the error mapping plan duration is 33 h 38 min and the uncertainty

of measurement metric is 53 lm. It is evident that both metrics are

not as low as when optimising for them individually, but it is clear

that the plan is a suitable compromise, showing significant reduc-

tion in both machine tool downtime and the uncertainty of mea-

surement due to the plan order. In comparison between the

single-objective optimum plans, the metrics in the multi-objective

plans are on average 2% worse for time and 8% worse for the uncer-

tainty of measurement than when they are optimised individually.

However, the multi-objective search plans are on average have a

3% reduction in the time metric when compared to the downtime

of the uncertainty optimised plan and a 23% improvement in esti-

mated uncertainty of measurement metric when compared to the

uncertainty of the temporally optimised plan.

The graph presented in Fig. 11(a) shows the average metrics for

the six different three-axis error mapping instances, and Fig. 11(b)

shows the six different five-axis error mapping instances. In these
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Fig. 10. Plan excerpt from an uncertainty and temporal optimisation.

Fig. 11. Graph showing the average metrics for optimising time, uncertainty and

time & uncertainty.
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two figures, the effect on both metrics when performing a

single-object optimisation can be visualised. Additionally, the

trade-off between time and uncertainty when performing the

multi-objective optimisation and the compromise in the final

solution can easily be visualised. From these two graphs, it can

be concluded that performing the multi-objective optimisation is

beneficia and adjusted the weighting of each metric would allow

optimisation on a case-by-case basis.

7. Conclusions

In this paper it has been identified that in addition to optimising

error mapping plans to minimise downtime or the uncertainty of

measurement, multi-objective optimisation can be performed.

The undertaken case studies show that in comparison between

the single-objective optimum plans, the metrics in the multi-

objective plans are on average 2% worse for time and 9% worse

for the uncertainty of measurement than when they are optimised

individually. However, the multi-objective search plans have on

average a 3% reduction in the time metric when compared to the

downtime of the uncertainty optimised plan and a 23% improve-

ment in estimated uncertainty of measurement metric when

compared to the uncertainty of the temporally optimised plan.

Evaluation of the generated plans have validated their

fitness-for-purpose and demonstrates the merit of automatically

generating measurement plans.

Knowledge regarding the discovery of optimal plans when per-

forming the experiments on a PC architecture highlighted that the

experimental analysis could be performed on an HPC architecture.

These experiments displayed that there is on average a 4%

improvement in optimality when compared with the experiments

performed on the PC architecture. This warrants the use of the HPC

resources for measurement engineers working to sub-micron tol-

erances and also suggests that a standard PC architecture is enough

for most applications. As the state-of-the-art in both AI

autonomous planners and PC computation power improve, the

requirement for HPC resources should potentially reduce.

This paper presents novel contributions to both the machine

tool metrology and automated planning (AP) community. The first

contribution presented in this paper is the ability to use AP to

model both temporal and uncertainty of measurement aspects of

a machine tool error mapping process. This involved modelling

the durations of each individual measurement, as well as discretiz-

ing continuous environmental temperature change. The paper then

describes how this model can be used by state-of-the-art AP algo-

rithms to find optimal plans based on three different metrics.

These metrics are: (1) downtime of the machine tool during mea-

surement, (2) estimated uncertainty of measurement, and (3) the

arithmetic mean of both time and uncertainty. The work under-

taken in this paper has also identified that for most manufacturers,

using the proposed technology on a standard PC architecture will

produce sufficient results. Producing both temporal and estimated

uncertainty of measurement optimised plans is a novel contribu-

tion to the machine tool metrology community, and provides a

solution to the identified literature gap. This has significant impli-

cations for all metrological processes where both their cost

through downtime, and quality through uncertainty can be

reduced. The work presented in this paper is also significant for

the AP community as it provides a real-world multi-objective

problem to use to initiate the development of more powerful AP

tools.

Future work includes the extension of the developed model to

account for other continuous factors that affect the uncertainty

of measurement. For example, the effect of performing

simultaneous measurements on the estimated uncertainty of

measurement needs to be investigated and modelled. This would

allow for concurrent measurements to be scheduled to minimise

the uncertainty of measurement. Therefore, further reducing

machine tool downtime and the uncertainty of measurement.
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