20 research outputs found
Selected North Carolina Beginning and Veteran Teachers’ Perceptions of Factors Influencing Retention and Attrition
The purpose of this qualitative study was to examine factors that impact teacher retention in public schools in the southeast region of North Carolina. Additionally, the purpose was to identify variables that influence beginning teachers’ decisions to leave and veteran teachers’ decisions to stay in the teaching profession. The 10 participants were former and current teachers employed in the State of North Carolina between 2008 and 2011. The research revealed that teacher support, working conditions, and student behavior were among the leading factors impacting beginning teachers’ decisions to leave the profession prior to tenure. The emerging issues in this study were consistent with other research findings from previous studies. The results from this study suggest that district leaders need to create mentoring programs for beginning teachers
Expanding Horizons
Mother Goose is Alive and Culturally Relevant; Predictable Books in a Middle School Class Writing Program; Computers and the Developmental Learne
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Recommended from our members
Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
Abstract: Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating
Ligand Binding Induces an Ammonia Channel in 2-Amino-2-desoxyisochorismate (ADIC) Synthase PhzE*
PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 and 2.1 Å resolution, respectively. PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain provides NH3 to the MST domain of the other. This quaternary structure was confirmed by small angle x-ray scattering. Binding of chorismic acid, which was found converted to benzoate and pyruvate in the MST active centers of the closed form, leads to structural rearrangements that establish an ammonia transport channel approximately 25 Å in length within each of the two MST/GATase1 functional units of the dimer. The assignment of PhzE as an ADIC synthase was confirmed by mass spectrometric analysis of the product, which was also visualized at 1.9 Å resolution by trapping in crystals of an inactive mutant of PhzD, an isochorismatase that catalyzes the subsequent step in phenazine biosynthesis. Unlike in some of the related anthranilate synthases, no allosteric inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the protein blocking the potential regulatory site. Additional electron density in the GATase1 active center was identified as zinc, and it was demonstrated that Zn2+, Mn2+, and Ni2+ reduce the activity of PhzE
Crystal Structure of Biotin Carboxylase in Complex with Substrates and Implications for Its Catalytic Mechanism*
Biotin-dependent carboxylases are widely distributed in nature and have
important functions in many cellular processes. These enzymes share a
conserved biotin carboxylase (BC) component, which catalyzes the ATP-dependent
carboxylation of biotin using bicarbonate as the donor. Despite the
availability of a large amount of biochemical and structural information on
BC, the molecular basis for its catalysis is currently still poorly
understood. We report here the crystal structure at 2.0 Å resolution of
wild-type Escherichia coli BC in complex with its substrates biotin,
bicarbonate, and Mg-ADP. The structure suggests that Glu296 is the
general base that extracts the proton from bicarbonate, and Arg338
is the residue that stabilizes the enolate biotin intermediate in the
carboxylation reaction. The B domain of BC is positioned closer to the active
site, leading to a 2-Å shift in the bound position of the adenine
nucleotide and bringing it near the bicarbonate for catalysis. One of the
oxygen atoms of bicarbonate is located in the correct position to initiate the
nucleophilic attack on ATP to form the carboxyphosphate intermediate. This
oxygen is also located close to the N1′ atom of biotin, providing strong
evidence that the phosphate group, derived from decomposition of
carboxyphosphate, is the general base that extracts the proton on this
N1′ atom. The structural observations are supported by mutagenesis and
kinetic studies. Overall, this first structure of BC in complex with
substrates offers unprecedented insights into the molecular mechanism for the
catalysis by this family of enzymes
A Nanobody Binding to Non-amyloidogenic Regions of the Protein Human Lysozyme Enhances Partial Unfolding but Inhibits Amyloid Fibril Formation.
We report the effects of the interaction of two camelid antibody fragments, generally called nanobodies, namely cAb-HuL5 and a stabilized and more aggregation-resistant variant cAb-HuL5G obtained by protein engineering, on the properties of two amyloidogenic variants of human lysozyme, I56T and D67H, whose deposition in vital organs including the liver, kidney, and spleen is associated with a familial non-neuropathic systemic amyloidosis. Both NMR spectroscopy and X-ray crystallographic studies reveal that cAb-HuL5 binds to the α-domain, one of the two lobes of the native lysozyme structure. The binding of cAb-HuL5/cAb-HuL5G strongly inhibits fibril formation by the amyloidogenic variants; it does not, however, suppress the locally transient cooperative unfolding transitions, characteristic of these variants, in which the β-domain and the C-helix unfold and which represents key early intermediate species in the formation of amyloid fibrils. Therefore, unlike two other nanobodies previously described, cAb-HuL5/cAb-HuL5G does not inhibit fibril formation via the restoration of the global cooperativity of the native structure of the lysozyme variants to that characteristic of the wild-type protein. Instead, it inhibits a subsequent step in the assembly of the fibrils, involving the unfolding and structural reorganization of the α-domain. These results show that nanobodies can protect against the formation of pathogenic aggregates at different stages in the structural transition of a protein from the soluble native state into amyloid fibrils, illustrating their value as structural probes to study the molecular mechanisms of amyloid fibril formation. Combined with their amenability to protein engineering techniques to improve their stability and solubility, these findings support the suggestion that nanobodies can potentially be developed as therapeutics to combat protein misfolding diseases.Department of Applied Biology and Chemical Technolog