51 research outputs found

    Additive Manufacturing and Hot-Fire Testing of Bimetallic GRCop-84 and C-18150 Channel-Cooled Combustion Chambers Using Powder Bed Fusion and Inconel 625 Hybrid Directed Energy Deposition

    Get PDF
    Additive manufacturing (AM) is an advanced fabrication technique that is demonstrating tremendous potential to reduce fabrication lead times and costs for liquid rocket engine components. The additive manufacturing technology lends itself to fabricate components with complex features such as internal coolant channels in combustion chambers that would otherwise require complex manufacturing operations. A requirement for high performance engines is to use high conductivity, high strength materials such as copper-alloys for combustion chamber liners to provide adequate wall temperatures and meet subsequent structural margins. A further requirement of this configuration is to minimize weight by defining and fabricating material in discrete locations as required. NASA and Industry partner, Virgin Orbit, have been working to advance these technologies through development of bimetallic additive manufacturing techniques under a public-private partnership through NASAs Announcement of Collaborative Opportunity (ACO). This partnership is advancing a bimetallic hybrid additively manufactured combustion chamber that integrates Powder Bed Fusion (PBF), specifically Selective Laser Melting (SLM), and Directed Energy Deposition (DED) blown powder techniques to optimize the chamber materials and subsequent assembly. The SLM process is being developed for the combustion chamber liner to use copper-alloys GRCop-84 (Copper-Chrome-Niobium) or C-18150 (Copper-Chrome-Zirconium). The hybrid DED blown powder technology is used to apply an integrated structural jacket and manifolds using an Inconel 625 superalloy on the outer surface of the SLM copper liner. The hybrid DED technology being used on this program is a DMG Mori Seiki AM machining center which integrates the DED blown powder with an integral subtractive (traditional) machining to minimize overall setups. A series of chambers were fabricated using these techniques with GRCop-84/Inconel 625 and C-18150/Inconel and hot-fire tested at NASA Marshall Space Flight Center (MSFC) in LOX/Kerosene (RP-1). This paper describes the process development to integrate these AM technologies into an integrated bimetallic assembly, the design of the chamber, results from hot-fire testing, and further development

    Additive Manufacturing and Hot-fire Testing of Bimetallic GRCop-84 and C-18150 Channel-Cooled Combustion Chambers using Powder Bed Fusion and Inconel 625 Hybrid Directed Energy Deposition

    Get PDF
    Additive manufacturing (AM) is an advanced fabrication technique that is demonstrating tremendous potential to reduce fabrication lead times and costs for liquid rocket engine components. The additive manufacturing technology lends itself to fabricate components with complex features such as internal coolant channels in combustion chambers that would otherwise require complex manufacturing operations. A requirement for high performance engines is to use high conductivity, high strength materials such as copper-alloys for combustion chamber liners to provide adequate wall temperatures and meet subsequent structural margins. A further requirement of this configuration is to minimize weight by defining and fabricating material in discrete locations as required. NASA and Industry partner, Virgin Orbit, have been working to advance these technologies through development of bimetallic additive manufacturing techniques under a public-private partnership through NASAs Announcement of Collaborative Opportunity (ACO). This partnership is advancing a bimetallic hybrid additively manufactured combustion chamber that integrates Powder Bed Fusion (PBF), specifically Selective Laser Melting (SLM), and Directed Energy Deposition (DED) blown powder techniques to optimize the chamber materials and subsequent assembly. The SLM process is being developed for the combustion chamber liner to use copper-alloys GRCop-84 (Copper-Chrome-Niobium) or C-18150 (Copper-Chrome-Zirconium). The hybrid DED blown powder technology is used to apply an integrated structural jacket and manifolds using an Inconel 625 superalloy on the outer surface of the SLM copper liner. The hybrid DED technology being used on this program is a DMG Mori Seiki AM machining center which integrates the DED blown powder with an integral subtractive (traditional) machining to minimize overall setups. A series of chambers were fabricated using these techniques with GRCop-84/Inconel 625 and C-18150/Inconel and hot-fire tested at NASA Marshall Space Flight Center (MSFC) in LOX/Kerosene (RP-1). This paper describes the process development to integrate these AM technologies into an integrated bimetallic assembly, the design of the chamber, results from hot-fire testing, and further development

    Darwin, the devil, and the management of transmissible cancers

    Get PDF
    Modern conservation science frequently relies on genetic tools to manage imperiled populations threatened by processes such as habitat fragmentation and infectious diseases. Translocation of individuals to restore genetic diversity (genetic rescue) is increasingly used to manage vulnerable populations, but it can swamp local adaptations and lead to outbreeding depression. Thus, genetic management is context dependent and needs evaluation across multiple generations . Genomic studies can help evaluate the extent to which populations are locally adapted to assess the costs and benefits of translocations. Predicting the long‐term fitness effects of genetic interventions and their evolutionary consequences is a vital step in managing dwindling populations threatened by emerging infectious diseases

    Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Language and alexithymia: Evidence for the role of the inferior frontal gyrus in acquired alexithymia

    Get PDF
    The clinical relevance of alexithymia, a condition associated with difficulties identifying and describing one’s own emotion, is becoming ever more apparent. Increased rates of alexithymia are observed in multiple psychiatric conditions, and also in neurological conditions resulting from both organic and traumatic brain injury. The presence of alexithymia in these conditions predicts poorer regulation of one’s emotions, decreased treatment response, and increased burden on carers. While clinically important, the aetiology of alexithymia is still a matter of debate, with several authors arguing for multiple ‘routes’ to impaired understanding of one’s own emotions, which may or may not result in distinct subtypes of alexithymia. While previous studies support the role of impaired interoception (perceiving bodily states) in the development of alexithymia, the current study assessed whether acquired language impairment following traumatic brain injury, and damage to language regions, may also be associated with an increased risk of alexithymia. Within a sample of 129 participants with penetrating brain injury and 33 healthy controls, neuropsychological testing revealed that deficits in a non-emotional language task, object naming, were associated with alexithymia, specifically with difficulty identifying one’s own emotions. Both region-of-interest and whole-brain lesion analyses revealed that damage to language regions in the inferior frontal gyrus was associated with the presence of both this language impairment and alexithymia. These results are consistent with a framework for acquired alexithymia that incorporates both interoceptive and language processes, and support the idea that brain injury may result in alexithymia via impairment in any one of a number of more basic processes

    Electric Vehicle Infrastructure in Massachusetts

    Get PDF
    Our project goal is to create a set of recommendations for how the state of Massachusetts can develop adequate infrastructure to support electric vehicles
    corecore