1,531 research outputs found

    Species assembly in model ecosystems, I: Analysis of the population model and the invasion dynamics

    Get PDF
    Recently we have introduced a simplified model of ecosystem assembly (Capitan et al., 2009) for which we are able to map out all assembly pathways generated by external invasions in an exact manner. In this paper we provide a deeper analysis of the model, obtaining analytical results and introducing some approximations which allow us to reconstruct the results of our previous work. In particular, we show that the population dynamics equations of a very general class of trophic-level structured food-web have an unique interior equilibrium point which is globally stable. We show analytically that communities found as end states of the assembly process are pyramidal and we find that the equilibrium abundance of any species at any trophic level is approximately inversely proportional to the number of species in that level. We also find that the per capita growth rate of a top predator invading a resident community is key to understand the appearance of complex end states reported in our previous work. The sign of these rates allows us to separate regions in the space of parameters where the end state is either a single community or a complex set containing more than one community. We have also built up analytical approximations to the time evolution of species abundances that allow us to determine, with high accuracy, the sequence of extinctions that an invasion may cause. Finally we apply this analysis to obtain the communities in the end states. To test the accuracy of the transition probability matrix generated by this analytical procedure for the end states, we have compared averages over those sets with those obtained from the graph derived by numerical integration of the Lotka-Volterra equations. The agreement is excellent.Comment: 16 pages, 8 figures. Revised versio

    Clinical reasoning in canine spinal disease: what combination of clinical information is useful?

    Get PDF
    Spinal disease in dogs is commonly encountered in veterinary practice. Numerous diseases may cause similar clinical signs and presenting histories. The study objective was to use statistical models to identify combinations of discrete parameters from the patient signalment, history and neurological examination that could suggest the most likely diagnoses with statistical significance. A retrospective study of 500 dogs referred to the Queen Mother Hospital for Animals before June 2012 for the investigation of spinal disease was performed. Details regarding signalment, history, physical and neurological examinations, neuroanatomical localisation and imaging data were obtained. Univariate analyses of variables (breed, age, weight, onset, deterioration, pain, asymmetry, neuroanatomical localisation) were performed, and variables were retained in a multivariate logistic regression model if P<0.05. Leading diagnoses were intervertebral disc extrusion (IVDE, n=149), intervertebral disc protrusion (n=149), ischaemic myelopathy (IM, n=48) and neoplasms (n=44). Multivariate logistic regression characterised IM and acute non-compressive nucleus pulposus extrusions as the only peracute onset, non-progressive, non-painful and asymmetrical T3-L3 myelopathies. IVDE was most commonly characterised as acute onset, often deteriorating, painful and largely symmetrical T3-L3 myelopathy. This study suggests that most spinal diseases cause distinctive combinations of presenting clinical parameters (signalment, onset, deterioration, pain, asymmetry, neuroanatomical localisation). Taking particular account of these parameters may aid decision making in a clinical setting

    The Milky Way's external disc constrained by 2MASS star counts

    Full text link
    Context. Thanks to recent large scale surveys in the near infrared such as 2MASS, the galactic plane that most suffers from extinction is revealed and its overall structure can be studied. Aims. This work aims at constraining the structure of the Milky Way external disc as seen in 2MASS data, and in particular the warp. Methods. We use the Two Micron All Sky Survey (hereafter 2MASS) along with the Stellar Population Synthesis Model of the Galaxy, developed in Besancon, to constrain the external disc parameters such as its scale length, its cutoff radius, and the slope of the warp. In order to properly interpret the observations, the simulated stars are reddened using a three dimensional extinction map. The shape of the stellar warp is then compared with previous results and with similar structures in gas and dust. Results. We find new constraints on the stellar disc, which is shown to be asymmetrical, similar to observations of HI. The positive longitude side is found to be easily modelled with a S shape warp but with a slope significantly smaller than the slope seen in the HI warp. At negative longitudes, the disc presents peculiarities which are not well reproduced by any simple model. Finally, comparing with the warp seen in the dust, it seems to follow a slope intermediate between the gas and the stars.Comment: 9 pages. Accepted for publication in Astronomy and Astrophysic

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting

    The spiral structure of our Milky Way Galaxy

    Full text link
    The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molecular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with R0R_0=8.5 kpc, and Θ0\Theta_0=220 km s−1^{-1} or the newly fitted rotation curves with R0R_0=8.0 kpc and Θ0\Theta_0=220 km s−1^{-1} or R0R_0=8.4 kpc and Θ0\Theta_0=254 km s−1^{-1}. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with R0R_0=8.0 kpc and Θ0\Theta_0=220 km s−1^{-1} and R0R_0=8.4 kpc and Θ0\Theta_0=254 km s−1^{-1} for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard R0R_0 and Θ0\Theta_0.Comment: 34 Pages, 10 Figures, 5 Tables. Accepted for publication in A&A. Edited

    Temporary ectropion therapy by adhesive taping: a case study

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Various surgical procedures are available to correct paralytic ectropion, which are applied in irreversible facial paresis. Problems occur when facial paresis has an unclear prognosis, since surgery of the lower eyelid is usually irreversible. We propose a simple method to correct temporary ectropion in facial palsy by applying an adhesive strip.</p> <p>Patients and methods</p> <p>Ten patients with peripheral facial paresis and paralytic ectropion were treated with an adhesive strip to correct paralytic ectropion. We used "Steri-Strips" (45 × 6.0 mm), which were taped on the carefully cleaned skin of the lower eyelid and of the adjacent zygomatic region until the prognosis of the paresis was clarified. In addition to the examiner's evaluation of the lower lacrimal point in the lacrimal lake, subjective improvement of the symptoms was assessed using a visual analogue scale (VAS, 1–10).</p> <p>Results</p> <p>9 patients reported a clear improvement of the symptoms after adhesive taping. There was a clear regression of tearing (VAS (median) = 8; 1 = no improvement, 10 = very good improvement), the cosmetic impairment of the adhesive tape was low (VAS (median) = 2.5; 1 = no impairment, 10 = severe impairment) and most of the patients found the use of the adhesive strip helpful. There was slight reddening of the skin in one case and well tolerated by the facial skin in the other cases.</p> <p>Conclusion</p> <p>The cause and location of facial nerve damage are decisive for the type of surgical therapy. In potentially reversible facial paresis, procedures should be used that are easily performed and above all reversible without complications. Until a reliable prognosis of the paresis can be made, adhesive taping is suited for the temporary treatment of paralytic ectropion. Adhesive taping is simple and can be performed by the patient.</p

    The neural mechanisms of mindfulness-based pain relief: a functional magnetic resonance imaging-based review and primer.

    Get PDF
    The advent of neuroimaging methodologies, such as functional magnetic resonance imaging (fMRI), has significantly advanced our understanding of the neurophysiological processes supporting a wide spectrum of mind-body approaches to treat pain. A promising self-regulatory practice, mindfulness meditation, reliably alleviates experimentally induced and clinical pain. Yet, the neural mechanisms supporting mindfulness-based pain relief remain poorly characterized. The present review delineates evidence from a spectrum of fMRI studies showing that the neural mechanisms supporting mindfulness-induced pain attenuation differ across varying levels of meditative experience. After brief mindfulness-based mental training (ie, less than 10 hours of practice), mindfulness-based pain relief is associated with higher order (orbitofrontal cortex and rostral anterior cingulate cortex) regulation of low-level nociceptive neural targets (thalamus and primary somatosensory cortex), suggesting an engagement of unique, reappraisal mechanisms. By contrast, mindfulness-based pain relief after extensive training (greater than 1000 hours of practice) is associated with deactivation of prefrontal and greater activation of somatosensory cortical regions, demonstrating an ability to reduce appraisals of arising sensory events. We also describe recent findings showing that higher levels of dispositional mindfulness, in meditation-naïve individuals, are associated with lower pain and greater deactivation of the posterior cingulate cortex, a neural mechanism implicated in self-referential processes. A brief fMRI primer is presented describing appropriate steps and considerations to conduct studies combining mindfulness, pain, and fMRI. We postulate that the identification of the active analgesic neural substrates involved in mindfulness can be used to inform the development and optimization of behavioral therapies to specifically target pain, an important consideration for the ongoing opioid and chronic pain epidemic

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
    • …
    corecore