
Ins t i tu t ional  Reposi tory  

This document is published in: 

Journal of Theoretical Biology, Vol. 269, Issue 1 (January 2011), pp. 330-343 

DOI: https://dx.doi.org/10.1016/j.jtbi.2010.09.032 

© 2010 Elsevier Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1016/j.jtbi.2010.09.032


� Corr

E-m

cuesta@
Species assembly in model ecosystems, I: Analysis of the population model
and the invasion dynamics
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a b s t r a c t

Recently we have introduced a simplified model of ecosystem assembly (Capitán et al., 2009) for which

we are able to map out all assembly pathways generated by external invasions in an exact manner. In

this paper we provide a deeper analysis of the model, obtaining analytical results and introducing some

approximations which allow us to reconstruct the results of our previous work. In particular, we show

that the population dynamics equations of a very general class of trophic-level structured food-web

have an unique interior equilibrium point which is globally stable. We show analytically that

communities found as end states of the assembly process are pyramidal and we find that the

equilibrium abundance of any species at any trophic level is approximately inversely proportional to

the number of species in that level. We also find that the per capita growth rate of a top predator

invading a resident community is key to understand the appearance of complex end states reported in

our previous work. The sign of these rates allows us to separate regions in the space of parameters

where the end state is either a single community or a complex set containing more than one

community. We have also built up analytical approximations to the time evolution of species

abundances that allow us to determine, with high accuracy, the sequence of extinctions that an invasion

may cause. Finally we apply this analysis to obtain the communities in the end states. To test the

accuracy of the transition probability matrix generated by this analytical procedure for the end states,

we have compared averages over those sets with those obtained from the graph derived by numerical

integration of the Lotka–Volterra equations. The agreement is excellent.
1. Introduction

A piece of common wisdom in ecology is that biodiversity
enhances the stability of ecosystems. This has traditionally been a
well established observational fact since the works of Odum
(1953), MacArthur (1955) and Elton (1958) who showed that
simple ecosystems (e.g. man-cultivated lands) undergo very large
fluctuations in population and are vulnerable to invasion, an
effect that gets reduced upon increasing the number of predators
and preys in the system. But early in the 1970s May showed that
randomly generated dynamical models for the populations of a
community exhibit the opposite feature: the larger the species
abundance the smaller its linear stability (May, 1972, 1973).
Thanks to this controversy we have gained very much insight into
the nature of ecosystems (McCann, 2000). Apart from the
introduction of more refined concepts of ecosystem stability
(Pimm, 1982), one of the main conclusions arising from the
comparison of empirical data with May’s predictions on the
pitán),
bounds for community stability (Dunne, 2006) is that real
ecosystem are within the tiny set of stable ones, no matter how
large they are; in other words, ecosystems are far from being just
random gatherings of species.

Natural communities carry out a selection mechanism that
induces colonizers adaptation. There has been a lot of theoretical
work in the past devoted to study the assembly of communities
through successional invasions (Post and Pimm, 1983; Drake,
1990; Case, 1990; Law and Morton, 1993, 1996; Morton and Law,
1997). Overall, these papers have provided a theoretical frame-
work to understand how communities are built up (Law, 1999).
The basic process in which these models are based is the
sequential arrival of rare species (invaders) that colonize the
ecosystem and that may be established, possibly causing a global
reconfiguration of the community in the long term by means of
several species extinctions. Obviously, these models are but
idealizations of the complex processes taking place in real
community assembly, but simple mechanisms acting in these
models could be expected to be the ones responsible for the
formation of real ecosystems (Law, 1999). This approach of
devising theoretical paradigms for real situations has been
successfully applied over and over in the field of statistical
mechanics—where, for instance, using such an idealization as the
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Ising model provides the clues to understanding ferromagnetism
in real materials (Huang, 1987).

Previous assembly models tend all to rely on the Lotka–
Volterra dynamics (but see the recent work of Lewis and Law,
2007), although differ in the criterion to accept an invasion. While
Post and Pimm (1983) assumed that new species were created ad

hoc, according to certain stochastic rules, subsequent approaches
(Drake, 1990; Law and Morton, 1996) introduced the concept of
‘‘species pool’’. A regional species pool is a set of possible invaders
whose trophic interactions have been determined in advance
(Law and Morton, 1996). Despite these differences, all previous
papers arrive at the conclusion that the species richness of each
resident community increases along successional time, although
the average resistance of a community to be colonized increases
in time. Therefore, community assembly increases biodiversity as
well as stability, understood as resistance to invasions.

Nevertheless, one must bear in mind that not all assembly
pathways have been explored in these models. The conclusions
reached so far rely on averages of quantities under study over a finite
set of realizations of the underlying stochastic process, that is
ultimately based on a finite pool of possible invaders. This has raised
several question that remained without a definitive answer. For
example, there was no clear-cut answer regarding the dependence of
the results on the history of invasions. Morton and Law (1997) found
a final end state resistant to invasions by the remaining species in the
pool at the end of the process, and this end state could be either a
single ecosystem or a set involving more than one community
connected by invasions with one another. Despite this conclusion, the
dependence of the end state on the assembly history is a matter of
discussion (Fukami and Morin, 2003). Moreover, we should not forget
that the number of species in the pools employed is always relatively
small, so the question remains as to whether larger pools lead to
qualitatively different results. In this respect, it has been pointed out
(Case, 1991; Levine and D’Antonio, 1999) that the exhaustion of good
invaders in the early assembly might be just an artifact of the
finiteness of the pool.

Trying to overcome the shortcomings of previous models, in
our previous work Capitán et al. (2009) we proposed a minimalistic
model of ecosystem assembly with which we were able to analyze all

assembly pathways, thus characterizing the full assembly process.
In spite of its simplicity, we recovered the same conclusions found
previously. Our model is also based on a pool of species and a
niche variable (the trophic level) that determines their interactions.
In contrast, however, our pool is infinite. In spite of that, within
the assumptions of the model, we found a finite number of
(viable) communities linked by colonization. This allowed us to
define an assembly graph for our model—similar to that of Warren
et al. (2003), who studied the assembly process experimentally for
a small pool of 6 protist species. By assigning transition probabilities
to the links of this graph the assembly process was mapped to a
Markov chain (Karlin and Taylor, 1975), which is tantamount to
saying that we defined a statistical mechanics on the set of viable
communities (microstates). In other words, our model gives the
probability distribution of all these microstates at any time.
This allowed us to characterize both transient and equilibrium states,
as well as to compute the time evolution of any observable along
the assembly in an exact manner. But more importantly, as our model
provides a complete and exact (albeit numeric) description of
the assembly process, we can positively state that, under the
assumptions of our model, in the long-term assembly dynamics a
unique end state is reached, and this state is formed by just one
uninvadable community or a closed set of communities connected
between them. These sets contain the communities that survive in
the long term, and the ecosystem can be regarded as a fluctuating
community that can vary each level occupancy trough successional
invasions.
In this paper we will give some analytical results for the
underlying population dynamics of our assembly model, and we
will see how these results can be combined together to arrive at
the same conclusions we obtained numerically in our previous
work. Relying on these analytic results, we will be able to describe
the observables that characterize the end states with high
accuracy. In particular, we will reproduce the variation of the
number of communities in each end state with the abundance of
abiotic resources, as well as the average values of quantities like
species richness. We will leave the computational and numerical
results that can be obtained with this model for the second paper
of this suite (Capitán et al., under review), which will be focused
in the successional variation of biologically relevant quantities
along the assembly, and the analysis of the main properties of
transient states.

This paper is organized as follows. Section 2 is devoted to the
analysis of a rather general model of trophic-level structured
food-webs, and the discussion of its dynamic stability. In Section 3
we will restrict ourselves to a particular case of community by
making a species symmetry assumption, that renders our model
closer to neutral models and allows a more detailed analytical
study. In Section 4 we will deduce some analytical properties of
the equilibrium point, such as estimations of the maximum
number of species allowed in a community for a given set of
parameters, or the maximum number of trophic levels that the
amount of resource allows. Section 5 is dedicated to discussing
some criteria for an invader to establish in a community, and to
give some global analytical approximations to the time evolution
of a system invaded by a top predator. Finally, in Section 6 we will
apply our analysis to recover the results obtained in Capitán et al.
(2009) by means of a numerical integration of the population
dynamics equations.

The two papers of this suite are self-contained and can be read
separately, although they are cross-referenced. Readers interested
in the underlying population dynamics of our model will find a
detailed discussion in this paper. Those readers more interested in
the ecological consequences and results that the model provides
can skip the technical Sections 4 and 5. For a full account of the
results that we have obtained, we refer them to the companion
paper.
2. Trophic-level structured food-webs

How species are arranged in a network to conform a food-web
is a question difficult to answer. The specific topology of the
network where feeding interactions take place is very complex
and several complicated models have been proposed for both the
structure and the dynamics of food-webs (Dunne, 2006). In
contrast, our aim in Capitán et al. (2009) was to construct a
minimalistic model, so we considered the traditional picture of
trophic pyramids of interacting species in different, well defined
trophic levels. Although trophic levels can be roughly described in
real webs (Martinez et al., 2006), we will assume that feeding
interactions take place strictly between species belonging to
contiguous, well defined trophic levels. This is a standard (and
accurate) assumption, as the models of tri-trophic food chains
show (Bascompte and Melián, 2005). This notwithstanding, it is
acknowledged that omnivory, i.e. predation from several levels,
exists although is still an open question how common it is. For
example, work on food-web motifs has found that omnivory is
sometimes under-represented and sometimes over-represented
in real networks (Bascompte and Melián, 2005). However, the
impact of including omnivory in the model could lead to
non-trivial results. Since the trophic level is normally related to
species size, feeding from lower levels will provide less energy to
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predators, so proper allometric relations should be included in the
model to fix the interaction strengths. For the sake of simplicity,
we will not divert ourselves from the standard assumption of
disregarding omnivory.

Therefore, any species at level ‘ will feed only on species at
level ‘�1 and will be preyed on only by species at level ‘þ1. Let s‘
be the number of species in the ‘�th level. Thus for an ecological
community with L trophic levels the total number of species is
S¼

PL
‘ ¼ 1 s‘. In order to determine which species are preyed on at

each level, we define the set of interaction matrices G‘ , with
dimensions s‘ � s‘�1, such that the element G‘

ij ¼ 1 when species j

in level ‘�1 is a prey of species i in level ‘, and is zero otherwise.
Any particular choice of this set of matrices determines the food-
web in our model.

According to our aim of developing a simplified model, we
propose a simple population dynamics with the purpose of
capturing on average the main behavior of species abundances. It
is inspired in a model used before to study coexistence in
competing communities (Lässig et al., 2001; Bastolla et al.,
2005a,b). Population dynamics is modeled by Lotka–Volterra
equations, including both predator-prey interactions as well as
intra- and interspecific competition. Thus, in order to keep the
model minimalistic we have chosen not to include other
interaction types such as mutualism.

Let n‘ be a column vector with the population densities of all
species at trophic level ‘. Following Bastolla et al. (2005a) we
propose the mean-field dynamics

_n‘i
n‘i
¼ ð�aþg‘þG

ð‘Þn‘�1�B‘n‘�g‘�ðG
‘þ1
Þ
Tn‘þ1Þi: ð1Þ

We assume that the strength of the feeding interactions between
contiguous levels is fixed and determined by the constants g‘þ ,
which control the amount of energy available to reproduction for
each predation event for species at level ‘, and g‘� ð4g‘þ Þ, which
take into account the mean damage caused by predation over
level ‘. The ratio g‘þ =g‘� measures the efficiency of conversion of
prey biomass into predator biomass.

Interspecific competition in a trophic level is measured by the
off-diagonal elements of the s‘ � s‘ matrix B‘ , while intraspecific
competition (diagonal elements) is normalized to unity (this just
amounts to fixing a time scale for the dynamics). A natural way to
represent this matrix is

B‘ ¼ ð1�r‘ÞIþr‘K‘ , ð2Þ

where r‘r1 measures the relative magnitude between
intra—and interspecific competition, and I is the identity matrix.
Diagonal elements of K‘ are equal to 1 due to the normalization of
the intraspecific competition. We will assume (the reasons will
become clearer later) that the competition matrix is symmetric
and positive definite.

Indirect competition due to sharing common preys is implicitly
represented in the predation terms. There is, however, a direct
competition due to other effects, such as territorial competition,
mutual aggressions, etc. We will assume (as in Bastolla et al.,
2005b) that species sharing more preys are closely related
ecologically (this fact might have support from a evolutionary
viewpoint as shown in Rezende et al., 2007), so their requirements
are similar and we can assume that elements of K‘ are
proportional to the ecological overlapping between species (Lässig
et al., 2001; Bastolla et al., 2005b). Let p‘ij represent the number of
common preys for species i and j belonging to level ‘. The species
overlapping due to common preys is K‘

ij ¼ p
‘
ij=

ffiffiffiffiffiffiffiffiffiffi
p‘ip

‘
j

q
, with p‘i the

total number of preys of species i. Under our matrix notation,
p‘ij ¼ ðG

‘G‘T
Þij and p‘i ¼ ðG

‘G‘T
Þii, so that

B‘ ¼ ð1�r‘ÞIþr‘D‘G‘
ðD‘G‘

Þ
T, ð3Þ
D‘ being a diagonal matrix with elements ðG‘G‘T
Þ
�1=2
ii . Expressed

as (3), it is evident that such a competition matrix is symmetric
and positive definite. It is worth mentioning that this system does
not fulfil the hypotheses leading to Gause’s competitive exclusion
principle (Hofbauer and Sigmund, 1998; Bastolla et al., 2005a),
even when there is a single level. Among other things, this is due
to the fact that competition coefficients between different species
are not all the same. This point will be discussed in more detail in
the second paper of this suite (Capitán et al., under review).

We regard all species as consumers, and so they have a death
rate, a‘i , which is the i-th component of vector a‘. Note that in a
real food-web the interaction coefficients will not be uniform
within a trophic level. In this sense, we represent interactions
averaged (mean-field) in each level but we allow variation in the
strength of the interactions among different trophic levels. Finally,
all species at the first level prey on a single resource, whose time
evolution is given by

_n0

n0
¼ R�n0�g1

�ðG
1
Þ
Tn1: ð4Þ

The constant R is the maximum amount of resource in the
absence of its consumers. The abundance n0 has to be understood
as the amount of a primary abiotic resource, like sunlight, water,
nitrogen, etc. It has to be considered as an energetic input for the
maintenance of the remaining species in the community. The
amount of such resource is limited, hence the saturation of n0 at a
value R.

The model is supplemented by an extinction threshold, nc 40,
independent of the species. If a population falls below this value it
is considered extinct (real populations cannot be arbitrarily
small). This viability condition has been previously used in similar
models (Kokkoris et al., 1999; Borrvall et al., 2000; Eklöf and
Ebenman, 2006), and accounts for the vulnerability of low density
communities against external environmental variations or
adverse mutations (Pimm, 1991). The technical need for this
extinction threshold in our model will become clearer when we
describe the variation of the densities in terms of the occupancy of
each level.

2.1. Dynamic stability of the interior equilibrium point

Eqs. (1) and (4) have several equilibria. Among them, the main
one is obtained by equating the right-hand side of these equations
to zero. If all the equilibrium densities are positive, this fixed
point is called the interior equilibrium. Populations p‘ at
equilibrium are obtained as the solution of the linear system of
S+1 equations

g‘þG
‘p‘�1�B‘p‘�g‘þ1

� ðG
‘þ1
Þ
Tp‘þ1 ¼ a‘ ,

p0þg1
�ðG

1
Þ
Tp1 ¼ R ð5Þ

for ‘¼ 1, . . . ,L. The remaining equilibria are obtained by setting to
zero any subset of the populations and solving the linear system
resulting from eliminating those variables. The resulting system is
the same as (5) but if species i at level ‘ has zero equilibrium
abundance, the i-th column in the corresponding matrix G‘ has to
be eliminated. Therefore, one only needs the solutions of linear
systems like (5) for a given choice of the set of matrices fG‘

gL‘ ¼ 1 in
order to fully determine all the equilibrium densities.

Since feeding relations are established among contiguous
levels, (5) acquires a block-tridiagonal structure. Due to this
form, the interior equilibrium can be formally obtained by
applying Gaussian elimination. We put the equilibrium abun-
dances in the form

p‘�1 ¼M‘p‘þc‘ ð6Þ
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for certain s‘�1 � s‘ matrices M‘ and s‘�1 � 1 vectors c‘ to be
determined (‘¼ 1, . . . ,Lþ1). Substitution into (5) gives the
following recursive relations for M‘ and c‘ ,

M‘þ1 ¼ g‘þ1
� ðg

‘
þG

‘M‘�B‘Þ�1
ðG‘þ1

Þ
T,

c‘þ1 ¼ ðg‘þG
‘M‘�B‘Þ�1

ða‘�g‘þG
‘c‘Þ: ð7Þ

Since the resource can only be preyed on and there is no
competition, we set G0

¼ 0 and r0 ¼ 0. This leads to the initial
conditions M1 ¼�g1

�ðG
1
Þ
T and c1

¼�R according to (4). Thus,
given a particular set of matrices fG‘

gL‘ ¼ 1, (7) fully determines M‘

and c‘. After that, starting from the boundary condition pL + 1
¼0

(the community has exactly L trophic levels), we backsubstitute
in (6) to get the equilibrium densities.

We can push further the property that our dynamical system
(1) is block-tridiagonal to study its dynamic stability. Let us show
that interior equilibria p‘i , for all i¼ 1, . . . ,s‘ and ‘¼ 0, . . . ,L, are
globally stable. This result is based in the existence a Lyapunov
function (Hofbauer and Sigmund, 1998), which guarantees that
any positive initial condition evolves towards the interior
equilibrium. The Lyapunov function for this system is

Vðfn‘gÞ ¼
XL

‘ ¼ 0

A‘
Xs‘

j ¼ 1

ðn‘j�p‘j log n‘j Þ, ð8Þ

where Ak ¼
Qk

‘ ¼ 1ðg‘�=g‘þ Þ for k¼1,y,L and A0¼1.
For (8) to be a Lyapunov function, we just need to check that

_Vr0 along any orbit fn‘ðtÞgL‘ ¼ 0 starting with positive initial
abundances (Hofbauer and Sigmund, 1998). Let us calculate its
time derivative. If we consider the displaced variables

y‘j ¼ n‘j�p‘j , ð9Þ

we can write (1) as _n‘i ¼ n‘i q‘i , where

q‘ ¼ g‘þG
‘y‘�1�B‘y‘�g‘�ðG

‘þ1
Þ
Ty‘þ1, ð10Þ

hence the time derivative is simply _V ðfn‘gÞ ¼
PL

‘ ¼ 0 A‘
Ps‘

j ¼ 1 y‘j q‘j .
After substituting (10), we arrive at

_V ðfn‘gÞ ¼ �
XL

‘ ¼ 0

A‘ðy
‘Þ

TB‘y‘þ
XL�1

‘ ¼ 0

ðA‘þ1g‘þ1
þ �A‘g‘þ1

� Þðy
‘þ1Þ

TG‘þ1y‘:

ð11Þ

Thus our previous choice of Ak cancels the second sum. Since B‘ is
positive definite, we deduce that the time derivative of the
Lyapunov function is negative along any orbit, and therefore
Lyapunov’s theorem (Hofbauer and Sigmund, 1998) ensures the
global stability of the non-trivial rest point p‘. Note that
the existence of this Lyapunov function is a direct consequence
of the block-tridiagonal structure of the dynamical system (1)–(4),
hence the assumption of predation only between contiguous
levels ensures global stability.
3. Species symmetry assumption

In what follows, we will restrict ourselves to the dynamical
system (1) with the particular choice of interaction matrices
G‘

ij ¼ 1 for any i,j,‘. This was the system studied in Capitán et al.
(2009). This assumption implies that all species are generalist,
and the model can now be regarded as a mean-field-like picture of
real communities, since all species in contiguous levels interact
with each other. We will assume as well that interaction
coefficients are independent of the trophic level, and we will
simply denote them as gþ , g�, r and a. These parameters should
now be understood as average strengths of the processes involved
in the population dynamics. These kind of models, which do not
make any explicit difference among species, are referred to as
neutral (Hubbell, 2001; Etienne and Alonso, 2007). From the point
of view of the trophic interactions there is no difference between
species (neither the rates nor the set of preys they feed on make
any distinction among species). We introduce this symmetric
scenario because it will allow a simpler, analytical description of
the community.

Pure neutral models do not make any distinction whatsoever
between species. This is not our case, because species can be
distinguished by their different balance between intra—and
interspecific competition. Neutrality in our model has to be
understood as a species symmetry assumption (Alonso et al.,
2008) for the strength of the interactions. We will discuss the case
r¼ 1, when the model turns to be fully symmetric (strictly
neutral), in the second paper of this suite (Capitán et al., under
review).

Under this symmetry assumption, the population dynamics (1)
with the competition matrix (3) transforms into _n‘i ¼ q‘i n‘i , where

q‘i ¼�aþgþN‘�1�ð1�rÞn‘i�rN‘�g�N‘þ1,

q0 ¼ R�n0�g�N1, ð12Þ

being N‘ �
Ps‘

i ¼ 1 n‘i . The set of equations (5) for the interior rest
point imply that the equilibrium abundances are equal for any
two species i and j of the same level. Hence the equilibrium
abundances fp‘gL‘ ¼ 1 are the solution to the linear system

a¼ gþ s‘�1p‘�1�½1þrðs‘�1Þ�p‘�g�s‘þ1p‘þ1,

R¼ p0þg�s1p1 ð13Þ

for ‘¼ 1, . . . ,L. Note that the global stability result holds only for
this equilibrium point.

3.1. Reduced dynamical system

As in our previous work (Capitán et al., 2009), equilibrium
communities will undergo invasions. Thus we are interested in
the time dynamics of an invaded community initially at
equilibrium. Notice that the per capita growth rates (12) satisfy
the equality

q‘i ð. . . ,n
‘
i , . . . ,n‘j , . . .Þ ¼ q‘j ð. . . ,n

‘
j , . . . ,n‘i , . . .Þ ð14Þ

under the interchange of the abundance of two species at the
same level. This symmetry, together with an initial condition
where n‘i ð0Þ ¼ n‘j ð0Þ, is enough to show that the time evolution of
both species is identical (see Appendix A). Thus we can reduce our
dynamical system to a set of L+1 differential equations,

_n‘

n‘
¼�aþgþ s‘�1n‘�1�½1þrðs‘�1Þ�n‘�g�s‘þ1n‘þ1,

_n0

n0
¼ R�n0�g�s1n1: ð15Þ

There is another crucial difference between our model and
usual neutral models in the literature. Although neutral models
ignore species identity, they are stochastic. It is the ecological drift
what makes species abundances to stochastically vary. This
stochasticity is the ultimate reason for extinction in neutral
models. On the contrary, our dynamical system is deterministic.
The reason to include the (somehow arbitrary) extinction thresh-
old nc is to ‘‘mimic’’ this fluctuation-driven extinction of species
with low abundance.

Thus extinctions must be understood stochastically in our
model. As it was pointed out in Capitán et al. (2009), the
stochastic effect of adverse mutations or external variations of the
environment that make species to go extinct is taken into account
4



in our deterministic dynamics with the viability condition n‘Znc.
Notice, however, that, strictly speaking, when a species of one
level falls below nc the whole level does too. Extinguishing the
whole level as the strict dynamics would require would be
unrealistic. Instead we eliminate species one by one until viability
is recovered (Capitán et al., 2009). This latter dynamics would
approximate better what one would find in a truly stochastic
neutral model, in which the simultaneous extinction of several
species is very unlikely to happen.

3.2. Structural stability

We have chosen the constants to be uniform in our model, this
making all species on each trophic level at equilibrium have equal
abundance. However, according to competitive exclusion
(MacArthur and Levins, 1964), a tiny variation in the parameters
that makes any difference among species will make the system
unstable. Fortunately, for this class of models the competitive
exclusion principle does not hold as such. This has been discussed
at length in Bastolla et al. (2005a). In this paper the authors derive
some bounds to the variation allowed for the constants that the
system can tolerate without leading any species to extinction. In
fact, the dynamical system they discuss is the same as we have
described in Section 2, with different constants for different
species. The more diverse the ecosystem is the stricter are these
bounds, but in any case, no matter how diverse the ecosystem is,
some variation of the constants is always tolerated without this
leading any species to extinction. This proves the structural
stability of our system, even under the assumption of species
symmetry.
4. Analytical properties of the interior rest point

4.1. Maximum number of species and maximum number of levels

In this subsection we will obtain an analytical estimation of
the maximum number of species that a trophic level can host
among all the possible viable equilibria. We simply set all the
abundances in each level to be equal to nc and solve the resulting
linear system (13) for fs‘g

L
‘ ¼ 1 and s0 � p0=nc ,

s0þg�s1 ¼
R

nc
,

gþ s‘�1�rs‘�g�s‘þ1 ¼ 1�rþ a
nc

ð16Þ

for ‘Z1. We introduce the generating function GðzÞ ¼
P1

‘ ¼ 0 s‘z‘

for the sequence fs‘g
L
‘ ¼ 1. The explicit solution will depend on two

initial conditions s0 and s1, since we have a two-term recursion.
We will leave them undetermined for the moment. The second
equation of (16) allows us to calculate explicitly G(z):

GðzÞ ¼
ð1�rþa=ncÞz2

ð1�zÞðgþ z2�rz�g�Þ
�
g�s0þzðrs0þg�s1Þ

gþ z2�rz�g�
: ð17Þ

We recover the general term of s‘ by a series expansion of the
generating function. Let us first define the constants

m¼ ð1�rþa=ncÞ=ðg��gþ þrÞ and z7 ¼ ðr7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4gþ g�

q
Þ=

ð2gþ Þ. In order to get compact expressions, we define the auxiliary

sequence

a‘ ¼
gþ
g�

� �‘ z‘þ1
þ �z‘þ1

�

zþ�z�
, ð18Þ

which satisfies the two-term recursion g�a‘ ¼ ra‘�1þgþ a‘�2 with

initial conditions a�1¼0, a0¼1. This recurrence can be fully
expressed as a linear combination of powers of r=g� and gþ =g�,

a‘ ¼
Xb‘=2c

k ¼ 0

‘�k

k

� �
r
g�

� �‘�2k gþ
g�

� �k

, ð19Þ

for all ‘Z0, bxc denoting the integer part of x.
Expanding G(z) we obtain s‘ in terms of a‘ ,

s‘ ¼ ð�1Þ‘
gþ
g�
ðs0þmÞa‘�2�ðs1þmÞa‘�1

� �
�m ð20Þ

for ‘Z2, where a‘ can be evaluated either using (18) or (19). In
order to solve the system (16), we have to impose sL+ 1¼0 for an
ecosystem to have L trophic levels. This provides a linear relation
between s0 and s1 which, together with the first equation of (16),
forms a linear system that determines both s0 and s1. The result is

s0 ¼
ðR=ncþmg�þmÞaL�ð�1ÞLmg�

aLþgþaL�1
�m,

s1 ¼
gþ ðR=ncþmg�þmÞaL�1þð�1ÞLmg�

g�ðaLþgþaL�1Þ
�m: ð21Þ

Substituting (21) into (20) and taking into account that

aLa‘�2�aL�1a‘�1 ¼ ð�1Þ‘
gþ
g�

� �‘�1

aL�‘ ð22Þ

is a direct consequence of the recurrence satisfied by a‘ , we finally
get

s‘ ¼
gþ
g�

� �‘ R

nc
þmg�þm

� �
aL�‘

aLþgþaL�1
�m ð�1ÞLþ ‘

a‘�1þgþ a‘�2

aLþgþaL�1
þ1

� �
ð23Þ

for all ‘Z1. This is the analytic solution of the system (16) and
gives an estimate of the maximum occupancy per level as a
function of the parameters of the model. Note that, despite what
(18) might suggest, no additional factors of the form gþ =g� can be
extracted from a‘ according to (19), so the lowest power of the
ratio gþ =g� in the expression for s‘ is ðgþ =g�Þ

‘ .
This dependence of s‘ on ðgþ =g�Þ

‘ is remarkable. In fact, in our
previous work (Capitán et al., 2009) we observed that the
communities in the end states of the assembly process were
pyramidal. This is, in turn, a consequence of the exhaustion of the
species occupancy in each trophic level. Notice also that the
estimation of the maximum number of species that a community
can host depends linearly on the resource saturation. This linear
dependence on R was also observed in our previous work.

Our estimation of the maximum occupancy of each trophic
level also provides a condition for the maximum number of
trophic levels that a set of parameters allows. Imposing sLZ1
yields a condition for the allowance of L trophic levels,

R

nc
þmðg�þ1ÞZ

g�
gþ

� �L

½ð1þmÞðaLþgþ aL�1ÞþmðaL�1þgþaL�2Þ�:

ð24Þ

Therefore, we have a minimum value of the resource saturation
for L trophic levels to be viable in a community.
4.2. Approximation of the equilibrium abundances

In our model, each set fs‘g
L
‘ ¼ 0 of species occupancies

determines a set of equilibrium densities according to (13).
Finding p‘ðfskgÞ is difficult, but in this section we will give a rather
good approximation for large enough s‘ . First we write the
5



system in terms of the total population at each level, P‘ ¼ s‘p‘

(‘¼ 1, . . . ,L),

gþP
‘�1� rþ 1�r

s‘

� �
P‘�g�P‘þ1 ¼ a,

P0þg�P1 ¼ R: ð25Þ
Written in this way, it seems natural to expand the solution in
powers of 1/s. In Appendix B we show that we can approximate

P‘ � TL,‘�ð1�rÞPL
ka ‘ Q

k
L,‘=sk

DL�ð1�rÞPL
k ¼ 1 BL,k=sk

: ð26Þ

As we can see in Fig. 1, this first order approximation captures
accurately the variation of the equilibrium densities p‘ with s‘.
Besides, we also obtain a very accurate approximation when we
vary the number of species sj in levels other than ‘. Note that, even
when the occupancy of a level is small (lower panels of Fig. 1), the
approximation remains good.

In the limit s‘b1 we obtain the dependence p‘ � C=s‘ , which
reflects the general tendency observed in Fig. 1. Moreover, in the
biologically relevant limit Rba, and taking into account the
explicit expressions for TL,‘ and DL given in Appendix B,
populations behave like

p‘ � R

s‘

gþ
g�

� �‘ aL�‘

aLþgþaL�1
ð27Þ

for ‘Z0. Several conclusions can be extracted from this
dependence. First, when the number of species in the ‘�th level
is exhausted, according to (23), we obtain a population density
p‘ � nc , as expected. But more importantly, it represents another
reason for the extinction threshold to be included in our model. If
there were no threshold, equilibrium densities would monotoni-
cally decrease with s‘ without ever becoming zero. The assembly
×

×

Fig. 1. Approximate equilibrium densities. Starting from a community with four levels

function of s‘ , which exhibits a dependence C=s‘ . Full lines with circles show the exact s

contain the relative error of each approximation. Remaining parameters are R¼1505,
graph would then contain infinitely many communities thus
becoming intractable.
5. Invaded dynamics

In Capitán et al. (2009) it was assumed that, during the
assembly process, successional invasions occur and modify
resident communities at equilibrium. There we made the hypoth-
esis of the average time between consecutive invasions being
much longer than the typical dynamic time scale for the
community to reach the equilibrium state. This is actually what
is observed. In relation to the different time scales between
invasion and competition, invasion events may take place at the
scale of years, long enough time for invaded communities to
stabilize [for example, the rate of new invasions in islands may be
one every few year (Sax et al., 2005)]. This assumption has also
been made in previous papers like Kokkoris et al. (1999), where
authors assume that after each invasion there is a re-organization
of the community prior to a new invasion. Specifically, they solve
the dynamical system describing the new community with the
invader until reaching the carrying capacity. These new densities
are then used as initial values for the new systems resulting from
the next invasion (see details in Kokkoris et al., 1999). The same
idea was applied in the construction of our assembly model
(Capitán et al., 2009).

We used a second hypothesis as well, namely that the
population of the invader is small (equal to the extinction
threshold nc). This is what is actually observed in real situations.
It is a well established fact that colonizers rarely reach a new
habitat in high numbers (Roughgarden, 1974; Turelli, 1981). In
theory, the probability of a small propagule to extend is used as
the invasibility criterion. In biological control, management of
×

×

and occupancies s1¼127, s2¼58, s3¼7 and s4¼7, we plot the variation of p‘ as a

olution of (13), and dotted lines with crosses show our approximation (26). Insets

gþ ¼ 0:5, g� ¼ 5, r¼ 0:3 and a¼ 1.



invasions is based on looking for a small density of species in new
areas (Liebhold and Bascompte, 2003). In this case, theoretical and
empirical work has taken advantage to predict conditions of
eradication based on density thresholds (Allee effects) and
demographic stochasticity.

Therefore, we can assume invaders arriving at some level of a
community in equilibrium with a small abundance set equal to
the extinction threshold. Under the species symmetry assump-
tion, the dynamic system _n‘i ¼ n‘i q‘i given by the response function
(12) applies as well for the invaded system, with
N‘ ¼

Ps‘
i ¼ 1 n‘i þn, n being the population density of the invader.

Therefore, once the equilibrium is reached after the invasion, the
density of the invader will equal p‘ (the density of the remaining
species in that level), which can be obtained by solving (15) with
an occupancy s‘þ1 in the ‘-th level. Moreover, the global stability
condition applies as well to the invaded dynamics. So we just
need to check the viability of the resulting equilibria in order to
determine whether the invader is accepted.

If the invasion takes place at level L+1, the equation for the
invader is simply

_n

n
¼�aþgþ sLnL�n, ð28Þ

which in fact is the last equation of the system (15) for a
community of L+1 levels with occupancies {s1,y,sL,1}. Hence the
global stability condition still remains valid and the invader will
be accepted if the resulting equilibrium is viable.

The complexity of the assembly dynamics comes from the
cases where some level in the invaded community falls below the
extinction threshold. The approach we used in Capitán et al.
(2009) to determine the sequence in which species go extinct
until leading to a final viable ecosystem was the following: for
levels that fell below the extinction threshold once the equili-
brium had been reached, we went back in their trajectory to the
point where the population of some species crossed the extinction
level nc for the first time, we removed one species from that level
and restarted the dynamics from that point. In this paper we will
propose an alternative way to determine that sequence based on
several criteria and analytical approximations that we will discuss
below.

5.1. Invasion criteria

Consider the general dynamical system _xi=xi ¼ qiðx,xIÞ,
_xI=xI ¼ qIðx,xIÞ for an arbitrary community with S species, where
x are the densities of the species in the resident community and xI

is the density of the invader. The establishment of a colonizer in
systems of this kind depends crucially on the initial per-capita
growth rate of the invader (Law and Morton, 1996). In fact, the
condition that must be satisfied for a new species to increase
when rare is

lim
T-1

1

T

Z T

0
qIðx̂ðtÞ,xI ¼ 0Þdt40, ð29Þ

i.e., the time average of the per-capita rate of increase of the
invader is positive when the species of the resident community
remain under certain attractor x̂ðtÞ of the dynamics. In our model,
the only attractor is the interior rest point, so the condition
reduces to qIðp,0Þ40, where p is the rest point of the resident
community. Strictly speaking, our model has a non-zero extinc-
tion threshold, so this condition has to be replaced by qIðp,ncÞ40.
Since we start from a resident community initially at equilibrium
and the invader initial density is nc, this condition reduces to the
initial per-capita growth rate of the invader.

The condition qIðp,ncÞ40 can be used to obtain criteria for the
invasibility at each level. For example, consider the initial growth
rate of the invader when the invasion takes place at level L+1
[Eq. (28)]. The condition for this rate to be positive is

pL4
aþnc

gþ sL
: ð30Þ

If this condition does not hold, the invader is the first species to go
extinct because it starts at the extinction level and with a negative
initial rate. In the end states, the populations of the resident
community are close to (but above) nc (Capitán et al., 2009), so the
former condition provides the approximate bound

sLZ
aþnc

gþnc
: ð31Þ

Even if the initial growth rate of the invader is positive,
asymptotically the level L+1 may not be viable. If this happens,
during the time when the population of the invader is above nc,
extinctions may occur at lower levels. This situation explains the
accumulation of recurrent states that we observed in Capitán
et al. (2009) when we varied the resource saturation (see
Section 6).

Invasions at levels ‘rL are subject to similar conditions. For
the initial growth rate of the invader to be positive

p‘4
nc

1�r ð32Þ

must hold. In general, an initially positive growth rate could lead
to potential extinctions in the remaining levels while the
equilibrium density of the invader is above the threshold. But it
could happen as well that the invader extinguishes at equilibrium
with some initial transient time above the extinction. To estimate
a condition for this to happen, let us assume that densities and
occupancies are inversely proportional (see (26) and Fig. 1).
Then the equilibrium abundance of the invader is s‘p‘=ðs‘þ1Þ,
therefore if

p‘onc 1þ
1

s‘

� �
ð33Þ

the invader goes extinct. This condition, together with (32),
leads to

s‘o
1

r�1 ð34Þ

so below this bound, the invader initially grows but becomes
extinct at equilibrium. We will use this condition to explain the
appearance of some recurrent subsets for certain values of R (see
Section 6).

It would be nice, however, to have a systematic way to predict
the sequence of extinctions after an invasion has occurred. Based
on our approximations for the equilibrium densities, we can
propose a way to sequentially remove species for invasions at
lower levels. Within the end states of our model, abundances are
close to the extinction threshold. Then (23) implies that commu-
nities are pyramidal, so lower levels are highly occupied but
higher levels contain a small number of species. Accordingly, the
increase of one species in a lower level has no significant effect in
the equilibrium abundances of the community. Therefore, if a
species goes extinct after an invasion in a low level, it has to be
the invader itself.

The extinction sequence for invasions in higher levels is not so
easy to predict. Nevertheless, changes in abundances upon
increasing s‘ are larger the higher the level (Fig. 1) so, in case
that several levels fall below the threshold, we can make the
assumption that it is always the ‘‘highest’’ species the one that
goes extinct first. This procedure provides a certain sequence of
extinctions whose accuracy will be checked in Section 6.

The prediction of the sequence of extinctions can be non-trivial
when a top predator invades if the resource saturation values do
7



Fig. 3. Same as Fig. 2, but with R¼1200 and occupancies s1¼106, s2¼49, s3¼6

and s4¼4. For this case the eigenvalue closest to zero of the linear stability matrix

is real. Although there is some discrepancy in our approximations, the global trend

is captured and the extinction times after the invasion are accurately predicted.
not allow for L+1 levels. We have devised global approximations
to the dynamics in this case to predict the order of extinctions
without having to resort to the numerical integration of the
system of differential equations, as we did in Capitán et al. (2009).

5.2. Global approximations to the dynamics invaded by a top

predator

Our heuristic approximations to the time dynamics of the
system (15) when an invader arrives at level L+1 are somehow
inspired in the matching technique used to obtain analytic
approximations to perturbed differential equations (see, for
example Bender and Orszag, 1984). First we calculate the
equilibrium point fp‘gL‘ ¼ 0 by either solving (13) or using the
approximations (26). Then we approximate nL+1(t) by the sum of
its long-term dependence nlt

L+1(t) (near equilibrium) plus a short-
term behavior nst

L+1(t). For the long term, a linear stability analysis
shows that the solution exponentially decays towards the
equilibrium point, so we will set

nLþ1
lt ðtÞ ¼ pLþ1þe�lt½d0 cosðotÞþd1 sinðotÞ�, ð35Þ

where the eigenvalue of the linear stability matrix whose real part
is closest to zero is �lþ io (o may be zero). The constants d0 and
d1 remain undetermined for the moment.

For the short-term behavior we propose

nLþ1
st ðtÞ ¼ CðtÞe�xt , ð36Þ

where CðtÞ ¼Pjcjt
j is a polynomial whose coefficients and the

exponent x need to be determined to capture the transient time
evolution. This way to express the short-term behavior is inspired
in the initial transient decay that can be observed in the initial
invader’s dynamics prior to getting close to the equilibrium point
(see Figs. 2 and 3). The polynomial has been included so as to
properly capture the initial condition and the initial deviations to
the exponential decay. The technical details to calculate the
undetermined coefficients in (35) and (36) are deferred to
Appendix C. Figs. 2 and 3 illustrate the validity of this
approximation in capturing the global trend of the time evolution.
Fig. 2. Dashed lines show our approximation for the dynamics of a four-level

community determined by the occupancies s1¼110, s2¼50, s3¼6 and s4¼5 when

invaded by a top predator at level 5. For this case the eigenvalue of the linear

stability matrix with real part closest to zero is complex. Full lines represent the

numerical integration of (12). Remaining parameters are the same as in Fig. 1. The

whole time evolution is accurately predicted. The extinction level nc¼1 is

represented with dotted lines. We can see how the first extinction in the

community takes place at level 4.
To reproduce the ordering of the extinctions we need the
extinction times for each level, and these times are approximated
with higher accuracy than the dynamic trajectories themselves
(see Fig. 3). In Fig. 4 we illustrate, for a particular community, the
extinction procedure compared to our analytical approximations.
In this case, the first level falling below nc is the fourth one (upper
panel). Then we remove one species from that level and restart
the dynamics from the point of extinction, and the fourth level
falls again below nc (second panel). After the removal of a new
species, the fourth level ends up above nc at equilibrium. Now the
next level ending below nc is the second one. We move to the
point of extinction of this second level and restart the dynamics
after removing one species from ‘¼ 2. After that it is just the
invader ð‘¼ 5Þ the only one that falls below the threshold, so we
remove it and the resulting community becomes viable. Were it
not, we would apply the same extinction procedure again and
again until the final community is viable. The sequence of
extinctions is well reproduced with our approximate solution,
although slight differences that alter the order of extinctions may
occur when different levels fall below nc roughly at the same time.
6. Application to community assembly

Our goal in this paper was to provide analytical support, albeit
approximate, to the results obtained in Capitán et al. (2009). We
want to check now whether our approximations correctly predict
the recurrent sets which are end states of the assembly process.
With this aim, we have varied the parameter R within the range
from 10 to 1700 in steps DR¼ 5. The remaining parameters of the
model will be set as in our previous work: gþ ¼ 0:5, g� ¼ 5,
r¼ 0:3, a¼ 1 and nc¼1.

Let us first fix the number of levels L. We can determine with
(24) the minimum value Rmin that allows for L+1 levels. The
results are summarized in Table 1. Moreover, we can combine
(23) and (31) to give an estimation of the initial value of Rrec for
the appearance of a recurrent set with more than one community,

R

nc
þmðg�þ1ÞZ g�

gþ

� �L aþnc

gþnc
þm

� �
ðaLþgþ aL�1Þ

�
þmðaL�1þgþ aL�2Þ

�
: ð37Þ

The resulting values show a good agreement with those obtained
numerically in Capitán et al. (2009) (see Table 1).



Table 1
Estimation of the value of R/nc for the appearance of a recurrent set with more

than one community (left). Minimum values of R/nc that allow a community with L

levels, according to (24) (right). The interval of values of R that correspond to the

recurrent sets is approximately [Rrec,Rmin]. R*rec and R*min are the corresponding

values found numerically (Capitán et al., 2009) mapping the whole range of R with

a resolution DR¼ 5.

L Rrec/nc R*rec/nc (75) L Rmin/nc R*min/nc (75)

1 25.80 30 2 35.80 40

2 75.88 80 3 131.88 135

3 323.93 325 4 457.53 470

4 973.56 975 5 1613.71 1630

Fig. 5. Number of communities in the recurrent sets obtained with the analytical

approximations (N, with crosses) and with a numerical integration of the

population dynamics (N0, with circles). The inset contains the absolute difference

jN�N0j. The global picture is the same as that found in Capitán et al. (2009),

although differences of a few tens arise in some cases.

Fig. 4. Extinction sequence for the community with s1¼110, s2¼51, s3¼6 and

s4¼5 invaded at level 5 (parameter values are the same as in Fig. 1, and nc¼1 is

depicted with a horizontal dotted line). We just show the time evolution of the

levels that go extinct or are close to extinction in equilibrium. Dotted curves

correspond to our analytical approximations. We show, with vertical lines, the

time for the first level to go extinct. The sequence of extinct levels is 4, 4, 2, 5 until

viability is recovered.
Then, for a given R, we can read off from Table 1 the number of
levels for the communities within the recurrent set. Once we
know it, we determine with (23) an estimation for the maximum
occupancies allowed. We round off the estimates to get an integer
set of values fs‘g and calculate the associated interior equilibrium.
It can happen that some of the p‘ fall below nc, so we decrease the
corresponding occupancies s‘ eliminating species one by one until
the equilibrium turns out to be viable. This way we obtain a
community very close to those of the recurrent set (communities
within this set are close to extinction), so we can use it as the
initial community to start the assembly process. We then
compute the set of viable communities connected to it, which
defines an assembly graph much smaller than those obtained in
Capitán et al. (2009) starting from the empty community |. We
analyze the graph to obtain its recurrent sets using the algorithm
of Xie and Beerel (1998) and we get one single set. In Figs. 5 and 6
we plot the number of communities in each end state, showing a
good agreement between the results obtained with the analytical
approximations reported here and the numerical results reported
in Capitán et al. (2009).

For every R we can always find a community which is
uninvadable at all its levels ‘rL. If R is such that (37) is not
verified, then the invader at level L+1 initially decreases and goes
extinct. This explains the intervals of R where only one absorbing
state is found. However, if (31) holds (with our choice of
parameters this happens when sLZ4), there is an initial time
interval where the population of the invader is above the
threshold. This can cause the extinction of lower level species,
and generate recurrent sets with more than one community.

Our analytical approximations thus provide results very close to
those obtained numerically. Besides its being more efficient (the
whole assembly needs not be generated), this method also allows to
predict what would happen for values of R larger than 1700, which
are computationally prohibitive for the numerical method. With our
bounds (24) and (37) we can estimate the next interval of R where
more than one community in the end state will appear, namely
RA ½3844,5114�. That is out of reach of the numerical method,
because the number of communities in the whole assembly graph
grows as fast as N� ek

ffiffi
R

p
(Capitán et al., under review).

Two observations are on purpose. First, there are small
intervals of R where the graph constructed starting from the
empty community has L levels but there are viable communities
with L+1 levels which cannot be assembled starting from |
(this phenomenon is analogous to the existence of unreachable
persistent communities showed in Warren et al., 2003).
We observe this effect for R¼460, 465, 1615, 1620 and 1625
(see Table 1). We have checked that even in these cases the



Fig. 6. Number N of communities in the recurrent sets obtained with the

analytical approximations (crosses in Fig. 5). The global trend is the same as found

in our previous work (see Capitán et al., 2009, Fig. 3). The inset shows the relative

difference in the prediction of the number of communities in the end states. Note

that the discrepancies occur in a region where this number is small. This explains

the relatively large error found in some cases.

Fig. 7. Average number of species Sav in the end states calculated analytically vs. R.

In the inset we show the relative error between S and its corresponding average S0
for each graph calculated numerically.

Π
 

Fig. 8. Cumulative probability functionPðmÞ for the distribution of the magnitude

m of avalanches of extinctions. The distributions follow an exponential behavior.

Crosses represent the results for our approximated transition matrix. The number

of recurrent states coincide for the analytical and numerical method. The inset

shows a case where the number of communities is underestimated. This explains

the absence of several points in the distribution estimated analytically. The

agreement is rather good even in this case.
recurrent state is exactly recovered using the analytical
approximations.

Secondly, we can observe from Figs. 5 and 6 that there are
small regions where recurrent sets with more than one commu-
nity are found out of the intervals predicted in Table 1 (around
R� 200 for L¼3 and R� 620 for L¼4). For those values, a single
absorbing community should be found. However, condition (34)
for an invader at level L to initially grow and become extinct at
equilibrium renders sLr2 for our choice of r. We have checked
that this condition is satisfied by all these small recurrent sets,
thus explaining their appearance.

We have to assess the accuracy of the transitions predicted in
the graph of our recurrent sets. Note that a slight difference in the
ordering of extinctions can change the final community after the
invasion and this may change the observed graph and therefore
the asymptotic probability distribution of the associated Markov
chain. In order to check the transition matrices we obtain, we have
calculated two averages. In Fig. 7 we show the variation of the
average number of species in the recurrent sets as a function of R. The
behavior is almost indistinguishable from that found in Capitán et al.
(2009) (the inset of Fig. 7 shows that the relative error is small).

We have also checked that the number of extinctions predicted
with our approximations follows the same distribution than the
one calculated numerically. To this purpose we define the
magnitude of an avalanche of extinctions as the relative variation
m¼DS=S of the total number of species in a community after an
invasion. In Fig. 8 we show the cumulative histogram for the
distribution of these magnitudes. We can see that the deviations
between both distributions are small. Further statistical results
will be discussed in the second paper of this suite.
7. Conclusions

In this paper we have presented a general model of trophic-
level structured food-web, where interactions between species
are either feeding or competing. For the sake of simplicity, feeding
only takes place between contiguous levels. The population
dynamics is modeled through Lotka–Volterra equations, and a
proof is given that a wide class of these models has a globally
stable interior equilibrium. We have introduced this model as an
appropriate general framework to study the process of



successional invasions. In the invasion process, we consider a
mean-field version, in which species in the same level are
trophically equivalent and only intra- and interspecific competi-
tion is distinguished. This species symmetry assumption has
allowed us to obtain analytical results, some of them exact and
some other approximate. Among them we have provided
estimations for the maximum number of species allowed per
level, the maximum number of levels for a given value of the
resource saturation, and certain analytical approximations of the
dependence of the equilibrium abundances on the occupancies of
each level. We have combined these results with some criteria for
the acceptance of an invader in our model communities, and with
the help of some global approximations of the invaded dynamics
we have been able to obtain, with high accuracy, the sequence of
extinctions occurring after an invasion. With this procedure we
have reproduced the same results that we found in a previous
work (Capitán et al., 2009), this time without resorting to an
integration of the Lotka–Volterra equations and without con-
structing the whole assembly graph. Among other things this
brings the opportunity of exploring the model for resources which
would otherwise be computationally prohibitive to obtain.

Although the main results of this model are discussed at length
in the second paper of this suite (Capitán et al., under review), we
have provided here a few of them which illustrate the global
assembly process and some of its main features. For instance, we
had reported already in Capitán et al. (2009) that, upon increasing
the resource saturation R, the number of levels, L, that the system
is able to sustain increases discontinuously. We provide here an
estimate of the values of R at which this occurs, and show that this
values grow essentially as � ðgþ =g�Þ

L. Under the assumption that
populations are close to the extinction level, we have shown that
equilibrium communities are pyramidal—again in agreement
with the results obtained in Capitán et al. (2009). Close to the
onset of appearance of a new level, the number of communities in
the end state increases. We have identified that the requirement
for this to happen is that the population of a top predator invading
the community initially grows only to go eventually extinct. From
this knowledge we can estimate the value of R at which the end
state starts to have more than just one community.

We have tested our approximations by calculating some
observables. Among them we report on the average species
richness as a function of R, as well as the distribution of the
avalanche of extinctions produced by an invasion. In both cases
the agreement is very good. In the latter case, it is worth
mentioning that this distribution of avalanches decays exponen-
tially with the avalanche size, meaning that there is a character-
istic size of the avalanches. This size roughly grows with the
species richness of the community, as one could expect. In any
case, avalanches never get even close to destroy the community.

We also propose in this paper an analytical approximation to
the dynamics of a community invaded by a top predator. This
approximation has been built matching the initial behavior of the
solution (derived from the initial condition) and the asymptotic
decay expected close to the equilibrium. We have found a rather
good agreement with the solutions obtained by a numerical
integration of the Lotka–Volterra equations, which has allowed us
to correctly predict (in most of the cases) the order of extinctions
eventually caused by the invasion of a top predator. These
approximations have been applied to reproduce the assembly
graphs for the recurrent sets, showing small discrepancies only for
certain values of R. This provides an alternative method to analyze
the system for other sets of parameter values, with a negligible
computational cost compared to the construction of the whole
assembly graph.

Our assembly model is based on several assumptions regard-
ing the invasion process. Two of the most important ones are that
newcomers invade at low population and the average time
between invasions is large compared to the time for the
communities to reach the equilibrium. If the invasion rate is too
high (Fukami, 2004; Bastolla et al., 2005b) or if the invasion is not
produced by rare species (Hewitt and Huxel, 2002), the assembly
process—and hence the resulting end states—can be drastically
altered. The reason is that communities that are not accessible
from the equilibrium state may be so from a transient or if there is
a massive invasion. This changes the assembly graph in ways that
we can neither predict nor even check, because these processes
are out of reach of our model. For instance, considering invading
transients, one of the strong simplifications we make use of is that
of starting always from a well-defined initial condition, namely
the equilibrium state. If the system can be invaded at any moment
during a transient there are infinitely many initial conditions to
start off from, something we cannot implement. So what happens
if any of those two hypotheses is violated remains an open
question.
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Appendix A. Derivation of the reduced dynamical system

We will show in this appendix that our dynamical system
_n‘i ¼ q‘i n‘i , with the linear response function (12), can be reduced
to the form (15) when all the initial species abundances at a
certain level are equal. The crucial point for this to be true is the
relation (14).

This result can be formulated in a simple way. Consider the
two-dimensional autonomous system

_x ¼ f ðx,yÞ,

_y ¼ gðx,yÞ, ðA:1Þ

with the initial condition x(0)¼y(0) and which satisfies
f(x,y)¼g(y,x). We are going to show that the Taylor expansions
centered at t¼0 of x(t) and y(t) are identical. In principle, both
expansions will have certain radii of convergence. Let t be lower
than the minimum of these radii. Then we just need to show that
all the derivatives at t¼0 coincide. But this follows by induction.

The first derivatives are shown to be equal easily. Let us
assume that x(k)(0)¼y(k)(0) for all k¼1,y,n. Then the (n+1)-th
derivative is

xðnþ1Þð0Þ ¼
Xn

j ¼ 0

n

j

 !
@nf

@xj@yn�j

����
t ¼ 0

xðjÞð0Þyðn�jÞð0Þ: ðA:2Þ

But, since f(x,y)¼g(y,x), this is equivalent to write

xðnþ1Þð0Þ ¼
Xn

j ¼ 0

n

j

 !
@ng

@yj@xn�j

����
t ¼ 0

yðjÞð0Þxðn�jÞð0Þ, ðA:3Þ

and, relabeling the sum index,

xðnþ1Þð0Þ ¼
Xn

j ¼ 0

n

n�j

 !
@ng

@xj@yn�j

����
t ¼ 0

xðjÞð0Þyðn�jÞð0Þ, ðA:4Þ

which is equal to y(n +1)(0).
Therefore, we have shown that the Taylor expansions of x(t)

and y(t) coincide. This means that x(t)¼y(t) within the radius of
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convergence of the series. For larger times, we can apply the same
argument by analytic continuation (we choose some t0 in the
interval or convergence as the centering point for a new Taylor
expansion, and repeat the argument). Hence we conclude that
x(t)¼y(t) for all t.

Note that the same considerations apply to our system (12), so we
can reduce considerably the complexity of the system and solve (15)
instead.
Appendix B. Analytical approximation to the equilibrium
densities

This appendix is devoted to solve the linear system for the
equilibrium densities (25). The solution of this system can be
obtained through Cramer’s rule as

s‘p
‘ ¼

XL,‘

DL
ðB:1Þ

for certain determinants XL,‘ and DL. Our approximation is based
in some recurrence equations that can be obtained for these
determinants.

Let us start with the (L+1)� (L+1) determinant

DL ¼

�1 �g� 0 � � � 0

gþ �d1 �g� � � � 0

0 gþ �d2 � � � 0

^ ^ ^ ^

0 0 0 � � � �dL

������������

������������
, ðB:2Þ

where d‘ � rþð1�r=s‘Þ. Hence the densities depend on fs‘g
L
‘ ¼ 1

only through the inverse of all the possible products si1 si2 � � � sik , for
some combination (i1,i2,y,ik) of k elements of the set {1,2,y,L}. In
the recurrent sets we get the largest occupancy of species in each
level allowed by the resource according to (21)–(23), so we expect
that a rather good approximation for the equilibrium densities
amounts to neglecting orders higher than 1/s. Hence

DL ¼DL�ð1�rÞ
XL

‘ ¼ 1

BL,‘

s‘
þO 1

s2

� �
, ðB:3Þ

where

DL ¼

�1 �g� 0 � � � 0

gþ �r �g� � � � 0

0 gþ �r � � � 0

^ ^ ^ ^

0 0 0 � � � �r

������������

������������
ðB:4Þ

has dimension (L+1)� (L+1) and BL,‘ is the determinant obtained
by substituting the ‘-th column of DL by the column vector u‘
whose components are u‘,i ¼ d‘,i (for i¼0,1,y,L).

The determinant D‘ satisfies the recursion

D‘ ¼�rD‘�1þgþ g�D‘�2, ðB:5Þ

where ‘¼ 1,2, . . . ,L, D0¼�1 and D1 ¼ rþgþ g�. This relation can
be easily solved using a generating function. On the other hand, it
is easy to see that BL,‘ ¼D‘�1EL�‘�1, with E‘ the ð‘þ1Þ � ð‘þ1Þ
determinant

E‘ ¼

�r �g� 0 � � � 0

gþ �r �g� � � � 0

0 gþ �r � � � 0

^ ^ ^ ^

0 0 0 � � � �r

������������

������������
, ðB:6Þ

which also satisfies (B.5) with E0 ¼�r and E1 ¼ r2þgþ g�.
The generating function that results from (B.5) is

GðzÞ ¼
X1
‘ ¼ 0

D‘z
‘ ¼

D0þðD1þrD0Þz

gþ g�z2�rz�1
, ðB:7Þ

and after the series expansion we get

D‘ ¼ ð�g�Þ
‘�1
½ðD1þrD0Þa‘�1�g�E0a‘�, ðB:8Þ

with a‘ given by (18). Hence the following compact expressions
result:

D‘ ¼ ð�1Þ‘þ1g‘�½a‘þgþa‘�1�, ðB:9Þ

E‘ ¼ ð�1Þ‘þ1g‘þ1
� a‘þ1: ðB:10Þ

The explicit expression for XL,‘ is obtained from DL substituting
its ‘�th column by the (L+1)�1 column vector ð�R,a, . . . ,aÞT. We
can expand it up to leading order in powers of 1/s to get

XL,‘ ¼ TL,‘�ð1�rÞ
XL

j ¼ 1
j a ‘

Qj
L,‘

sj
þO 1

s2

� �
, ðB:11Þ

where

TL,‘ ¼

�1 �g� 0 � � � �R � � � 0

gþ �r �g� � � � a � � � 0

0 gþ �r � � � a � � � 0

^ ^ ^ ^ ^

0 0 0 � � � a � � � �r

������������

������������
ð0Þ ð‘Þ ðLÞ ðB:12Þ

and Qj
L,‘ is the determinant that results when we substitute the

j-th column of TL,‘ by uj (ja‘).
Expanding TL,‘ along its first row we get

TL,‘ ¼�aAL,‘þagþ g�AL�1,‘�1þð�1Þ‘þ1Rg‘þ EL�‘�1, ðB:13Þ

where we define the new i� i determinants Ai,j as

Ai,j ¼

�r �g� 0 � � � 1 � � � 0

gþ �r �g� � � � 1 � � � 0

0 gþ �r � � � 1 � � � 0

^ ^ ^ ^ ^

0 0 0 � � � 1 � � � �r

������������

������������
ð1Þ ðjÞ ðiÞ ðB:14Þ

that satisfy the recurrence equation

An,j ¼�rAn�1,jþgþ g�An�2,jþgn�j
� Ej�2 ðB:15Þ

for j¼1,2,y,n�1 (with the boundary conditions Aj,j +1¼0 and
Aj,0¼0), and

An,n ¼�gþAn�1,n�1þEn�2: ðB:16Þ

These relations can be explicitly solved. On the one hand, by
definition A1,1¼1, which amounts to choosing E�1 � 1 for this to
be compatible with (B.16). Moreover, making use again of a
generating function, the solution of (B.16) is

Aj,j ¼
ð�1Þj�1gj

�

g��gþ þr
r
g�

aj�1þ
gþ þr
g�

aj�2þ
gþ
g�

aj�3�
gþ
g�

� �j
" #

ðB:17Þ

for jZ2. On the other hand, the explicit solution of (B.15) is

Ajþk,j ¼ ð�1Þkgkþ1
� akþ1Aj,jþ

gk
�Ej�2

g��gþ þr
½ð�1Þkþ1

ðg�ak�gþak�1Þþg��

ðB:18Þ
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for kZ1. Therefore, Eqs. (B.17) and (B.18), together with (B.13),
provide an explicit expression for the determinant TL,‘ .

Fortunately, Qj
L,‘ can be written in terms of previous determi-

nants since Qj
L,‘ is a block-diagonal determinant with two blocks

that satisfies

Qj
L,‘ ¼Dj�1AL�‘,‘�j for ko j, ðB:19Þ

Qj
L,‘ ¼ EL�j�1Tj�1,‘ for k4 j: ðB:20Þ

This completes the analytical approximation of the equilibrium
densities of our dynamical model. We have derived explicit
expressions for all the terms involved in (B.1), (B.3) and (B.11) up
to leading order in 1/s. Moreover, note that the same technique
applied to find this approximation can be extended to obtain the
exact dependence on fs‘g

L
‘ ¼ 1 of the abundances. Higher-order

terms in powers of 1/s introduce in the corresponding determi-
nants several column vectors of the type of u‘ making each
determinant to be block-diagonal involving D‘ , E‘ , Ai,j or Tj

‘,k, so
that the general solution contains in each term a product of a
certain combination of these determinants. This explicit expres-
sion can in fact be written, but it is too cumbersome. The
approximations here obtained are both sufficiently simple and
accurate enough to capture the behavior of population densities
in the communities of the recurrent sets.
Appendix C. Technical details of the global approximations to
the dynamics

In this appendix we will describe the calculation of the
undetermined parameters of our ansatz (35)–(36) for the
dynamics of system invaded by a top predator. We impose that
the initial condition and the first k derivatives at t¼0 match the
exact values, which can be readily calculated. Indeed, our system
has the form _xi ¼�axiþxifiðxÞ, where fiðxÞ ¼

P
jbijxj is a linear

function. Therefore, we can recursively calculate the (s+1)-th
initial derivative as

xðsþ1Þ
i ð0Þ ¼�axðsÞi ð0Þþ

Xs

j ¼ 0

s

j

 !
xðs�jÞ

i ð0Þfiðx
ðjÞð0ÞÞ: ðC:1Þ

For a real eigenvalue ðo¼ 0Þ, we choose C(t) [see (36)] to be a
polynomial of degree k�2, and for a complex one ðoa0Þ we
choose degree k�3, in order to compensate for the extra
undetermined coefficient in the long-term behavior in this case.
Equating the approximate solution to the initial condition and the
first k�1 derivatives of our ansatz to the exact values leads to a
linear system for the undetermined coefficients. The equation for
the k-th derivative yields a polynomial equation for x, namely

Xk�2

j ¼ 0

k�2

j

 !
Hjx

k�j�2
¼ ðl2

þo2ÞpLþ1, ðC:2Þ

when oa0, where

Hj ¼ ðl
2
þo2ÞnðjÞð0Þþ2lnðjþ1Þð0Þþnðjþ2Þð0Þ ðC:3Þ

and n(j) stands for the j-th derivative of nL+ 1, which can be
calculated exactly using (.21). For o¼ 0 Eq. (.22) gets replaced by

Xk�1

j ¼ 0

k�1

j

 !
½lnðjÞð0Þþnðjþ1Þð0Þ�xk�j�1

¼ lpLþ1: ðC:4Þ

Afterwards, we just need to calculate the coefficients cj and d0

(and d1, if oa0) by solving the linear system that they satisfy.
Once we have the approximate time behavior for nL + 1 we

calculate analytically the remaining populations n‘ by direct
substitution into the system (15), taking advantage of the
recursive form of these equations, once nL +1 is known. Notice
that, since we have to calculate successive derivatives in order to
get any lower population, the accuracy of nL+ 1 at short times
degrades as we calculate lower level populations. Fortunately the
model produces communities with a small number of trophic
levels (Capitán et al., 2009). The choice k¼5 seems to be enough
to account for the dynamics of any community of up to L¼4 levels
invaded by a top predator (see Figs. 2 and 3). For the description
of the dynamics of communities with a higher number of levels
we would need to choose polynomials of higher degree in our
ansatz.

A final caveat needs to be made with respect to the calculation
of x. We need it to be positive, otherwise (36) would be
meaningless. Among all the roots of (.22) we choose the largest,
positive, real solution, so that any possible initial oscillation of the
polynomial C(t) is damped by the exponential. In the majority of
the dynamics that we have approximated (see Section 6), we are
able to find a positive solution for x. However, in some cases there
is no positive solution. In those cases we just minimize the
difference between the exact k-th derivative and the approximate
one at t¼0. This also produces an acceptable solution. In all
minimization procedures that we have run, a positive exponent x
is always found.
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Eklöf, A., Ebenman, B., 2006. Species loss and secondary extinctions in simple and
complex model communities. J. Anim. Ecol. 75, 239–246.

Elton, C.S., 1958. Ecology of Invasions by Animals and Plants. Chapman & Hall,
London.

Etienne, R.S., Alonso, D., 2007. Neutral community theory: how stochasticity and
dispersal-limitation can explain species coexistence. J. Stat. Phys. 128,
485–510.

Fukami, T., 2004. Community assembly along a species pool gradient: implications
for multiple-scale patterns of species diversity. Popul. Ecol. 46, 137–147.

Fukami, T., Morin, P.J., 2003. Productivity–biodiversity relationships depend on the
history of community assembly. Science 424, 423–426.

Hewitt, C.L., Huxel, G.R., 2002. Invasion success and community resistance in
single and multiple species invasion models: do the models support the
conclusions? Biol. Inv. 4 263–271.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge.

Huang, K., 1987. Statistical Mechanics. Wiley, New York.
Hubbell, S.P., 2001. The Unified Theory of Biodiversity and Biogeography.

Princeton University Press, Princeton.
Karlin, S., Taylor, H.M., 1975. A First Course in Stochastic Processes. Academic

Press, New York.
13



Kokkoris, G.D., Troumbis, A.Y., Lawton, J.H., 1999. Patterns of species interaction
strength in assembled theoretical competition communities. Ecol. Lett. 2, 70–74.
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