23 research outputs found

    Dissociation of virtual photons in events with a leading proton at HERA

    Get PDF
    The ZEUS detector has been used to study dissociation of virtual photons in events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100 GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X. Events were required to have a leading proton, detected in the ZEUS leading proton spectrometer, carrying at least 90% of the incoming proton energy. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex, Phi, the azimuthal angle between the positron scattering plane and the proton scattering plane, and Q^2. The data are presented in terms of the diffractive structure function, F_2^D(3). A next-to-leading-order QCD fit to the higher-Q^2 data set and to previously published diffractive charm production data is presented

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    O Efeito da Carga e do Tamanho da Partícula Abrasiva no Desgaste do Ferro Fundido Branco 19,9 % Cr e 2,9% c

    No full text
    No trabalho foi investigado o efeito da carga e do tamanho da partícula abrasiva na resistência ao desgaste da liga de ferro fundido branco alto cromo (FFBAC) com composição química de 2,9% de carbono e 19,9% de cromo em massa. A microestrutura da liga é composta por uma matriz de martensita revenida a 200 ºC, com carboneto eutético, isenta de perlita ou austenita retida. No ensaio abrasivo pino sobre lixa foram utilizadas lixas de sílica e de granada como abrasivo com três granulometrias distintas: 63 &#956;m, 149 &#956;m e 177 &#956;m, sob a aplicação de duas cargas: 5 N e 10 N. Em abrasão no Roda-de-Borracha utilizou-se como abrasivo a areia normal brasileira com três tamanhos médios: 87 &#956;m, 115 &#956;m e 170 &#956;m e três cargas: 44 N, 80 N e 130 N. As superfícies de desgaste foram analisadas com um analisador tridimensional de superfícies e os micromecanismos de desgaste foram caracterizados usando microscopia eletrônica de varredura (MEV). Os resultados obtidos nos ensaios no Roda-de-Borracha mostraram, de maneira geral, um aumento no volume perdido no desgaste com o aumento da carga e o aumento do tamanho da partícula abrasiva e permitiram a observação de um tamanho crítico do abrasivo. No ensaio pino sobre lixa obteve-se variação de uma ordem de grandeza no volume perdido no desgaste com lixa de sílica variando a carga de 5 N para 10 N

    STN probability atlas

    No full text
    This atlas takes advantage of ultra-high resolution 7T MRI to provide unprecedented levels of detail on structures of the basal ganglia in-vivo. The atlas includes a disease-specific probability map of the subthalamic Nucleus based on Parkinson's Disease patients. The atlas is based either on QSM or T2*-weighted structural scans

    Data from: Comparison of T2*-weighted and QSM contrasts in Parkinson's disease to visualize the STN with MRI

    No full text
    The subthalamic nucleus (STN) plays a crucial role in the surgical treatment of Parkinson's disease (PD). Studies investigating optimal protocols for STN visualization using state of the art magnetic resonance imaging (MRI) techniques have shown that susceptibility weighted images, which display the magnetic susceptibility distribution, yield better results than T1-weighted, T2-weighted, and T2*-weighted contrasts. However, these findings are based on young healthy individuals, and require validation in elderly individuals and persons suffering from PD. Using 7T MRI, the present study set out to investigate which MRI contrasts yielded the best results for STN visualization in 12 PD patients and age-matched healthy controls (HC). We found that STNs were more difficult to delineate in PD as reflected by a lower inter-rater agreement when compared to HCs. No STN size differences were observed between the groups. Analyses of quantitative susceptibility mapping (QSM) images showed a higher inter-rater agreement reflected by increased Dice-coefficients. The location of the center of mass of the STN was not affected by contrast. Overall, contrast-to-noise ratios (CNR) were higher in QSM than in T2*-weighted images. This can at least partially, explain the higher inter-rater agreement in QSM. The current results indicate that the calculation of QSM contrasts contributes to an improved visualization of the entire STN. We conclude that QSM contrast is the preferred choice for the visualization of the STN in persons with PD as well as in aging HC.,STN probability atlasThis atlas takes advantage of ultra-high resolution 7T MRI to provide unprecedented levels of detail on structures of the basal ganglia in-vivo. The atlas includes a disease-specific probability map of the subthalamic Nucleus based on Parkinson's Disease patients. The atlas is based either on QSM or T2*-weighted structural scans.STN_pd_plosone_atlas.zip

    Quantitative results.

    No full text
    <p>A) Mean dice-coefficients. PD participants are compared to healthy controls. Error bars indicate 95% bootstrapped confidence intervals. Note the significant increase in Dice-coefficient in QSM contrasts. B) Mean distances between the center of mass. Error bars indicate 95% bootstrapped confidence interval. Note the smaller distances in the QSM corresponding to higher agreement between raters. C) Average contrast-to-noise ratios (CNRs). Error bars indicate 95% bootstrapped confidence interval. Note that higher CNR-values in QSM contrasts reflect improved visibility.</p
    corecore