132 research outputs found

    Synthesis and antimicrobial evaluation of a pyrazoline-pyridine silver(I) complex: DNA-interaction and anti-biofilm activity

    Get PDF
    The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 ฮผg/mL (4.2โ€“16.7 ฮผM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MICโ€‰โ‰คโ€‰0.25 ฮผg/mLโ€‰=โ€‰0.26 ฮผM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation

    Small Multitarget Molecules Incorporating the Enone Moiety

    Get PDF
    Chalcones represent a class of small drug/druglike molecules with different and multitarget biological activities. Small multi-target drugs have attracted considerable interest in the last decade due their advantages in the treatment of complex and multifactorial diseases, since "one drug-one target" therapies have failed in many cases to demonstrate clinical efficacy. In this context, we designed and synthesized potential new small multi-target agents with lipoxygenase (LOX), acetyl cholinesterase (AChE) and lipid peroxidation inhibitory activities, as well as antioxidant activity based on 2-/4- hydroxy-chalcones and the bis-etherified bis-chalcone skeleton. Furthermore, the synthesized molecules were evaluated for their cytotoxicity. Simple chalcone b4 presents significant inhibitory activity against the 15-human LOX with an IC50 value 9.5 ยตM, interesting anti-AChE activity, and anti-lipid peroxidation behavior. Bis-etherified chalcone c12 is the most potent inhibitor of AChE within the bis-etherified bis-chalcones followed by c11. Bis-chalcones c11 and c12 were found to combine anti-LOX, anti-AchE, and anti-lipid peroxidation activities. It seems that the anti-lipid peroxidation activity supports the anti-LOX activity for the significantly active bis-chalcones. Our circular dichroism (CD) study identified two structures capable of interfering with the aggregation process of Aฮฒ. Compounds c2 and c4 display additional protective actions against Alzheimer's disease (AD) and add to the pleiotropic profile of the chalcone derivatives. Predicted results indicate that the majority of the compounds with the exception of c11 (144 ร…) can cross the Blood Brain Barrier (BBB) and act in CNS. The results led us to propose new leads and to conclude that the presence of a double enone group supports better biological activities

    Evolution of the capsular gene locus of Streptococcus pneumoniae serogroup 6

    Get PDF
    Streptococcus pneumoniae expressing serogroup 6 capsules frequently causes pneumococcal infections and the evolutionary origins of the serogroup 6 strains have been extensively studied. However, these studies were performed when serogroup 6 had only two known members (serotypes 6A and 6B) and before the two new members (serotypes 6C and 6D) expressing wciNฮฒ were found. We have therefore reinvestigated the evolutionary origins of serogroup 6 by examining the profiles of the capsule gene loci and the multilocus sequence types (MLSTs) of many serogroup 6 isolates from several continents. We confirmed that there are two classes of cps locus sequences for serogroup 6 isolates. In our study, class 2 cps sequences were limited to a few serotype 6B isolates. Neighbour-joining analysis of cps sequence profiles showed a distinct clade for 6C and moderately distinct clades for class 1 6A and 6B sequences. The serotype 6D cps profile was found within the class 1 6B clade, suggesting that it was created by recombination between 6C and 6B cps loci. Interestingly, all 6C isolates also had a unique wzy allele with a 6 bp deletion. This suggests that serotype switching to 6C involves the transfer of a large (>4โ€…kb) gene segment that includes both the wciNฮฒ allele and the โ€˜shortโ€™ wzy allele. The MLST studies of serotype 6C isolates suggest that the 6C cps locus is incorporated into many different pneumococcal genomic backgrounds but that, interestingly, 6C cps may have preferentially entered strains of the same genomic backgrounds as those of serotype 6A

    Test of a Novel Streptococcus pneumoniae Serotype 6C Type Specific Polyclonal Antiserum (Factor Antiserum 6d) and Characterisation of Serotype 6C Isolates in Denmark

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2007, Park <it>et al. </it>identified a novel serotype among <it>Streptococcus pneumoniae </it>serogroup 6 which they named serotype 6C. The aim of this study was to evaluate with the Neufeld test a novel <it>S. pneumoniae </it>serotype 6C type specific polyclonal antiserum. In addition, serotype 6C isolates found in Denmark in 2007 and 2008 as well as eight old original serotype 6A isolates were characterised.</p> <p>Methods</p> <p>In this study, 181 clinical <it>Streptococcus pneumoniae </it>isolates from Denmark 2007 and 2008 were examined; 96 isolates had previously been typed as serotype 6A and 85 as serotype 6B. In addition, eight older isolates from 1952 to 1987, earlier serotyped as 6A, were examined. Serotype 6C isolates were identified by PCR and serotyping with the Neufeld test using the novel type specific polyclonal antiserum, factor antiserum 6 d, in addition to factor antisera 6b, 6b* (absorbed free for cross-reactions to serotype 6C) and 6c. All antisera are commercially available and antiserum 6b obtained from the supplier after 1 January 2009 is antiserum 6b*. All serotype 6C isolates were further characterised using multi-locus sequence typing.</p> <p>Results</p> <p>When retesting all 96 original serotype 6A isolates by PCR and the Neufeld test, 29.6% (24 of 81) of the invasive isolates in Denmark from 2007 and 2008 were recognised as serotype 6C. In addition, three of eight old isolates originally serotyped as 6A were identified to be serotype 6C. The oldest serotype 6C isolate was from 1962. The serotype 6C isolates belonged to eleven different sequence types (ST) and nine clonal complexes (CC), ST1692 (CC395), ST386 (CC386) and ST481 (CC460) were the predominant types.</p> <p>Conclusions</p> <p>We tested a novel polyclonal antiserum 6 d, as well as modified antiserum 6b*, provided a scheme for the serotyping of <it>S. pneumoniae </it>serogroup 6 using the Neufeld test and compared the serotyping method with PCR based methods. The two types of methods provided the same results. In future, it will, therefore, be possible to test also serotype 6C in accordance to the standard method for serotyping of <it>S. pneumoniae </it>recommended by WHO.</p> <p>Among all invasive isolates from Denmark 2007 and 2008, serotype 6C constituted 29.6% of the original serotype 6A isolates. The serotype 6C isolates were found to be diverse belonging to a number of different STs and CCs of which most have been observed in other countries previously. Serotype 6C is regarded as an "old" serotype being present among <it>S. pneumoniae </it>isolates in Denmark for at least 48 years. The genetic diversity of serotype 6C isolates and their genetic relationship to other serotypes suggested that serotype 6C strains may have arisen from several different independent recombination events involving different parental strains such as serotypes 6A, 6B, 23F and 4.</p

    Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes

    Get PDF
    Several major invasive bacterial pathogens are encapsulated. Expression of a polysaccharide capsule is essential for survival in the blood, and thus for virulence, but also is a target for host antibodies and the basis for effective vaccines. Encapsulated species typically exhibit antigenic variation and express one of a number of immunochemically distinct capsular polysaccharides that define serotypes. We provide the sequences of the capsular biosynthetic genes of all 90 serotypes of Streptococcus pneumoniae and relate these to the known polysaccharide structures and patterns of immunological reactivity of typing sera, thereby providing the most complete understanding of the genetics and origins of bacterial polysaccharide diversity, laying the foundations for molecular serotyping. This is the first time, to our knowledge, that a complete repertoire of capsular biosynthetic genes has been available, enabling a holistic analysis of a bacterial polysaccharide biosynthesis system. Remarkably, the total size of alternative coding DNA at this one locus exceeds 1.8 Mbp, almost equivalent to the entire S. pneumoniae chromosomal complement

    Nontypeable Pneumococci Can Be Divided into Multiple cps Types, Including One Type Expressing the Novel Gene pspK

    Get PDF
    Although virulence of Streptococcus pneumoniae is associated with its capsule, some pathogenic S.ย pneumoniae isolates lack capsules and are serologically nontypeable (NT). We obtained 64 isolates that were identified as NT โ€œpneumococciโ€ (i.e., bacteria satisfying the conventional definition but without the multilocus sequence typing [MLST]-based definition of S. pneumoniae) by the traditional criteria. All 64 were optochin sensitive and had lytA, and 63 had ply. Twelve isolates had cpsA, suggesting the presence of a conventional but defective capsular polysaccharide synthesis (cps) locus. The 52 cpsA-negative isolates could be divided into three null capsule clades (NCC) based on aliC (aliB-like ORF1), aliD (aliB-like ORF2), and our newly discovered gene, pspK, in their cps loci. pspK encodes a protein with a long alpha-helical region containing an LPxTG motif and a YPT motif known to bind human pIgR. There were nine isolates in NCC1 (pspK+ but negative for aliC and aliD), 32 isolates in NCC2 (aliC+ aliD+ but negative for pspK), and 11 in NCC3 (aliD+ but negative for aliC and pspK). Among 52 cpsA-negative isolates, 41 were identified as S.ย pneumoniae by MLST analysis. All NCC1 and most NCC2 isolates were S.ย pneumoniae, whereas all nine NCC3 and two NCC2 isolates were not S.ย pneumoniae. Several NCC1 and NCC2 isolates from multiple individuals had identical MLST and cps regions, showing that unencapsulated S.ย pneumoniae can be infectious among humans. Furthermore, NCC1 and NCC2 S.ย pneumoniae isolates could colonize mice as well as encapsulated S.ย pneumoniae, although S.ย pneumoniae with an artificially disrupted cps locus did not. Moreover, an NCC1 isolate with pspK deletion did not colonize mice, suggesting that pspK is critical for colonization. Thus, PspK may provide pneumococci a means of surviving in the nasopharynx without capsule

    Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    Get PDF
    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops

    Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential

    Get PDF
    In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity

    Transmission of zoonoses through immigration and tourism

    No full text
    More than 200 of the documented zoonoses represent a high proportion of the infectious diseases that cause cases of morbidity and mortality and almost 75% are emerging infections. Immigration and tourism are human activities that are included in the broader field of human migration and travel. Travel plays a significant role in the emergence and spread of disease. The migration of humans has provided the route of spread for infectious diseases and zoonoses (for example, plague, yellow fever, monkey pox and severe acute respiratory syndrome). Tourism constitutes a small fraction of overall movements of humans but a point worthy of note is the number of international travellers has increased by more than 1 300% over the last 50 years. In addition, over 80 million people, mostly from developing countries, are legal or illegal immigrants. The consequences of travel extend beyond the traveller to the population visited and the ecosystem. Tourism and immigration may constitute an interface for mixing different genetic and ecological profiles, as well as cultural and social aspects, which is of particular interest in regard to zoonoses. Primary prevention, epidemiological surveillance and health education in the framework of intersectoral and international collaboration remain the cornerstone for response to and control of zoonoses in the context of tourism and immigration
    • โ€ฆ
    corecore