157 research outputs found

    Cost effect of surgeon and patient discretion in regard to cataract surgery

    Get PDF
    Purpose: The purpose of this study is to examine the cost effect of surgeon and patient discretion in regard to cataract surgery and how this affects population health care costs. Methods: A model of cataract progression was created from preexisting published data and combined with mortality data and Medicare cataract statistics to estimate the effect of mortality on decreasing the rate of cataract surgery if surgery was delayed until any cataract progression occurred. Results: Five-year cataract progression rates were determined for a given patient age, sex, and type of cataract. Combined with 5-year death rates, delaying surgery until progression occurred resulted in a 1.1% decrease in surgery for nuclear sclerosis at age 45 that increased to a 33.8% decrease by age 90; a 1.5% decrease in surgery for cortical cataract at age 45 that increased to a 51.1% decrease by age 90; and a 1.6% decrease in surgery for posterior subcapsular at age 45 that increased to a 59.7% decrease by age 90. The effect of this decrease in surgical volume on Medicare was estimated to result in a 13% overall decrease in cataract surgery annually at a cost of ~$660 million dollars per year. Conclusion: Overall, we conclude that surgeon and patient discretion in regard to cataract surgery has a substantial cost effect with the potential to reduce surgical volume by as much as 13% by the decision to delay surgery as a result of patient mortality

    Paul trapping of radioactive 6He+ions and direct observation of their beta-decay

    Full text link
    We demonstrate that abundant quantities of short-lived beta unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6He+ (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled and bunched by means of the buffer gas cooling technique. More than 10^8 ions have been stored over a measuring period of six days and about 10^5 decay coincidences between the beta particles and the 6Li^{++} recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments.Comment: 4 pages, 4 figures, submitted to Phys.Rev.Let

    Effects of deceptive running speed on physiology, perceptual responses, and performance during sprint-distance triathlon

    Get PDF
    Objective This study examined the effects of speed deception on performance, physiological and perceptual responses, and pacing during sprint-distance triathlon running. Methods Eight competitive triathletes completed three simulated sprint-distance triathlons (0.75 km swim, 20 km bike, 5 km run) in a randomised order, with swimming and cycling sections replicating baseline triathlon performance. During the first 1.66 km of the run participants maintained an imposed speed, completing the remaining 3.33 km as quickly as possible. Although participants were informed that initially prescribed running speed would reflect baseline performance, this was true during only one trial (Tri-Run100%). As such, other trials were either 3% faster (Tri-Run103%), or 3% slower (Tri-Run97%) than baseline during this initial period. Results Performance during Tri-Run103% (1346 ± 108 s) was likely faster than Tri-Run97% (1371 ± 108 s), and possibly faster than Tri-Run100% (1360 ± 125 s), with these differences likely to be competitively meaningful. The first 1.66 km of Tri-Run103% induced greater physiological strain compared to other conditions, whilst perceptual responses were not significantly different between trials. Conclusions It appears that even during ‘all-out’ triathlon running, athletes maintain some form of ‘reserve’ capacity which can be accessed by deception. This suggests that expectations and beliefs have a practically meaningful effect on pacing and performance during triathlon, although it is apparent that an individual’s conscious intentions are secondary to the brains sensitivity to potentially harmful levels of physiological and perceptual strain

    Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector

    Get PDF
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"

    Measurement of double beta decay of Âč⁰⁰Mo to excited states in the NEMO 3 experiment

    Get PDF
    The double beta decay of Âč⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of Âč⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of Âč⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10ÂČ⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0âș→0_{1}^{+}) > 8.9 x 10ÂČÂČ y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0âș→2_{1}^{+}) > 1.1 x 10ÂČÂč y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0âș→2_{1}^{+}) > 1.6 x 10ÂČÂł y (at 90% C.L.)

    First Measurement of Pure Electron Shakeoff in the ÎČ Decay of Trapped 6He+ Ions

    Get PDF
    ExpĂ©rience GANIL/SPIRAL/LIRATThe electron shakeoff probability of 6Li2+ ions resulting from the ÎČ- decay of 6He+ ions has been measured with high precision using a specially designed recoil ion spectrometer. This is the first measurement of a pure electron shakeoff following nuclear ÎČ decay, not affected by multielectron processes such as Auger cascades. In this ideal textbook case for the application of the sudden approximation, the experimental ionization probability was found to be Psoexp=0.023 39(36) in perfect agreement with simple quantum mechanical calculations

    Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector

    Full text link
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m < (1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2 10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}. Two-neutrino 2b-decay half-lives have been measured with a high accuracy, T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2} Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure

    Limits on different Majoron decay modes of 100^{100}Mo and 82^{82}Se for neutrinoless double beta decays in the NEMO-3 experiment

    Full text link
    The NEMO-3 tracking detector is located in the Fr\'ejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100^{100}Mo and 82^{82}Se for different Majoron emission modes and limits on the effective neutrino-Majoron coupling constants. In particular, new limits on "ordinary" Majoron (spectral index 1) decay of 100^{100}Mo (T1/2>2.7⋅1022T_{1/2} > 2.7\cdot10^{22} y) and 82^{82}Se (T1/2>1.5⋅1022T_{1/2} > 1.5\cdot10^{22} y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are <(0.4−1.9)⋅10−4 < (0.4-1.9) \cdot 10^{-4} and <(0.66−1.7)⋅10−4< (0.66-1.7) \cdot 10^{-4}.Comment: 23 pages includind 4 figures, to be published in Nuclear Physics

    Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    Full text link
    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy
    • 

    corecore