18 research outputs found

    Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry

    Get PDF
    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies

    Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms

    Get PDF
    Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity

    The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity

    No full text
    Patient registries are instrumental for clinical research in rare diseases. They help to achieve a sufficient sample size for epidemiological and clinical research and to assess the feasibility of clinical trials. The European Society for Immunodeficiencies (ESID) registry currently comprises information on more than 25,000 patients with inborn errors of immunity (IEI). The prerequisite of a patient to be included into the ESID registry is an IEI either defined by a defect in a gene included in the disease classification of the international union of immunological societies, or verified by applying clinical criteria. Because a relevant number of patients, including those with common variable immunodeficiency (CVID), representing the largest group of patients in the registry, remain without a genetic diagnosis, consensus on classification of these patients is mandatory. Here, we present clinical criteria for a large number of IEI that were designed in expert panels with an external review. They were implemented for novel entries and verification of existing data sets from 2014, yielding a substantial refinement. For instance, 8% of adults and 27% of children with CVID (176 of 1704 patients) were reclassified to 22 different immunodeficiencies, illustrating progress in genetics, but also the previous lack of standardized disease definitions. Importantly, apart from registry purposes, the clinical criteria are also helpful to support treatment decisions in the absence of a genetic diagnosis or in patients with variants of unknown significance.status: publishe

    The Fused Methionine Sulfoxide Reductase MsrAB Promotes Oxidative Stress Defense and Bacterial Virulence in Fusobacterium nucleatum

    No full text
    Scheible M, Nguyen CT, Luong TT, et al. The Fused Methionine Sulfoxide Reductase MsrAB Promotes Oxidative Stress Defense and Bacterial Virulence in Fusobacterium nucleatum. mBio. 2022: e03022-21.Fusobacterium nucleatum, an anaerobic Gram-negative bacterium frequently found in the human oral cavity and some extra-oral sites, is implicated in several important diseases: periodontitis, adverse pregnancy outcomes, and colorectal cancer. To date, how this obligate anaerobe copes with oxidative stress and host immunity within multiple human tissues remains unknown. Here, we uncovered a critical role in this process of a multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins, which are induced when fusobacterial cells are exposed to hydrogen peroxide. Comparative transcriptome analysis revealed that the response regulator ModR regulates a large regulon that includes trx, ccdA, and many metabolic genes. Significantly, specific mutants of the msrAB locus, including msrAB, are sensitive to reactive oxygen species and defective in adherence/invasion of colorectal epithelial cells. Strikingly, the msrAB mutant is also defective in survival in macrophages, and it is severely attenuated in virulence in a mouse model of preterm birth, consistent with its failure to spread to the amniotic fluid and colonize the placenta. Clearly, the MsrAB system regulated by the two-component system ModRS represents a major oxidative stress defense pathway that protects fusobacteria against oxidative damage in immune cells and confers virulence by enabling attachment and invasion of multiple target tissues. IMPORTANCE F. nucleatum colonizes various human tissues, including oral cavity, placenta, and colon. How this obligate anaerobe withstands oxidative stress in host immune cells has not been described. We report here that F. nucleatum possesses a five-gene locus encoding a fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin- and cytochrome c-like proteins. Regulated by ModRS, MsrAB is essential for resistance to reactive oxygen species, adherence/invasion of colorectal epithelial cells, and survival in macrophage. Unable to colonize placenta and spread to amniotic fluid, the msrAB mutant failed to induce preterm birth in a murine model

    Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas

    Get PDF
    Microalgae are receiving increasing attention as alternative production systems for renewable energy such as biofuel. The photosynthetic alga Chlamydomonas reinhardtii is widely recognized as the model system to study all aspects of algal physiology, including the molecular mechanisms underlying the accumulation of starch and triacylglycerol (TAG), which are the precursors of biofuel. All of these pathways not only require a carbon (C) supply but also are strongly dependent on a source of nitrogen (N) to sustain optimal growth rate and biomass production. In order to gain a better understanding of the regulation of C and N metabolisms and the accumulation of storage carbohydrates, the effect of different N sources (NH(4)NO(3) and [Image: see text]) on primary metabolism using various mutants impaired in either NIA1, NIT2 or both loci was performed by metabolic analyses. The data demonstrated that, using NH(4)NO(3), nia1 strain displayed the most striking phenotype, including an inhibition of growth, accumulation of intracellular nitrate, and strong starch and TAG accumulation. The measurements of the different C and N intermediate levels (amino, organic, and fatty acids), together with the determination of acetate and [Image: see text] remaining in the medium, clearly excluded the hypothesis of a slower [Image: see text] and acetate assimilation in this mutant in the presence of NH(4)NO(3). The results provide evidence of the implication of intracellular nitrate and NIT2 in the control of C partitioning into different storage carbohydrates under mixotrophic conditions in Chlamydomonas. The underlying mechanisms and implications for strategies to increase biomass yield and storage product composition in oleaginous algae are discussed

    The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity

    No full text
    Patient registries are instrumental for clinical research in rare diseases. They help to achieve a sufficient sample size for epidemiological and clinical research and to assess the feasibility of clinical trials. The European Society for Immunodeficiencies (ESID) registry currently comprises information on more than 25,000 patients with inborn errors of immunity (IEI). The prerequisite of a patient to be included into the ESID registry is an IEI either defined by a defect in a gene included in the disease classification of the international union of immunological societies, or verified by applying clinical criteria. Because a relevant number of patients, including those with common variable immunodeficiency (CVID), representing the largest group of patients in the registry, remain without a genetic diagnosis, consensus on classification of these patients is mandatory. Here, we present clinical criteria for a large number of IEI that were designed in expert panels with an external review. They were implemented for novel entries and verification of existing data sets from 2014, yielding a substantial refinement. For instance, 8% of adults and 27% of children with CVID (176 of 1704 patients) were reclassified to 22 different immunodeficiencies, illustrating progress in genetics, but also the previous lack of standardized disease definitions. Importantly, apart from registry purposes, the clinical criteria are also helpful to support treatment decisions in the absence of a genetic diagnosis or in patients with variants of unknown significance

    Disease evolution and response to rapamycin in activated phosphoinositide 3-kinase δ syndrome : The European society for immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry

    No full text
    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2-3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies
    corecore